

COBOL REPORT WRITER PRECOMPILER

INSTALLATION AND OPERATION

for IBM z/OS

Program Number 5798-DYR

and Program Number 5798-DZX (Run Time Library only)

IBM Publication SC26-4302-04 with updates

On-Line Version: Cross References are in Yellow

Eleventh Edition, Jan 2021

Text 1986, 1995, 2002, 2021 by: S&P.C. Systems Ltd.

browsable media (PDF) version Wimbledon

Complete copies of this document may London

be freely made and distributed on United Kingdom

computer or magnetic media

www.adobe.

 www.spc-systems.com

www.adobe.com/products/acrobat/readstep.html info@spc-systems.com

http://www.spc-systems.com/
http://www.adobe.com/products/acrobat/readstep.html

 Preface iii

Contents

1 Precompiler: General Information 1

 1.1 Objectives 3

 1.1.1 Purpose of COBOL Report Writer 3

 1.1.2 Purpose of the Precompiler 5

 1.1.3 Benefits 6

 1.2 Migration from OS/VS COBOL 6

 1.3 Precompiler System Overview 7

 1.4 Notes on Precompiler Operation 7

 1.5 Purpose of PRTEXIT(RW) 8

 1.6 Options and Customization 9

 1.7 Run Time Library 9

 1.8 Elements of Input Source 9

 1.8.1 Compiler-Directing Statements 9

 1.8.2 Sequence Numbers 11

 1.8.3 Comment Lines 11

 1.8.4 Debug Lines 12

 1.8.5 Identification Columns 12

 1.8.6 Nested and Batched Programs 12

 1.9 COPY … REPLACING and REPLACE 12

 1.9.1 Wild Cards 12

 1.9.2 LEADING and TRAILING 13

 1.9.3 REPLACE ALSO and REPLACE (LAST) OFF 13

 1.10 Conditional Precompilation 14

 1.10.1 Usage 14

 1.10.2 Syntax 14

 1.11 Intermediate Source 16

 1.12 Source Listings 17

 1.13 Return Codes 18

 1.14 Debug 19

 1.15 Output from Report Writer Programs 19

 1.15.1 Basic Printing 19

 1.15.2 Special Printing 19

 1.15.3 Special Effects 19

2 Planning and Preparation for Installation 21

 2.1 Requirements for Precompiler 23

 2.1.1 Minimum Hardware and Software Requirements 23

 2.1.2 Size and Memory Requirements 23

 2.1.3 Data Set Requirements 23

 COBOL Report Writer Precompiler Installation and Operation for z/OS

iv

 2.2 Requirements for Run Time Library 24

 2.2.1 What Run Time Services are Required? 24

 2.2.2 How Run Time Routines are Incorporated 24

 2.2.3 Re-Generating Run Time Library 26

 2.3 Preparing to Customize 26

 2.3.1 Why Customize? 26

 2.3.2 How Options Control the Precompilation 26

 2.3.3 Meanings of the Options 28

 2.3.4 Restrictions to Other Compiler Options 38

3 Installation and Customization for z/OS 39

 3.1 Copying the Supply Media 41

 3.2 Customizing the Precompiler 43

 3.3 Run Time Sources 44

 3.4 Installation Verification 44

 3.5 Compiling the COBOL Run Time Routines 44

 3.6 Sample File Handler 44

4 Using the Precompiler on z/OS 45

 4.1 Using INEXIT(RW),PRTEXIT(RW) 47

 4.1.1 STEPLIB 47

 4.1.2 Work File RWWORK 47

 4.1.3 Main Listing SYSLIST 48

 4.2 Using the Stand-alone Precompiler 48

 4.3 Linking & Running a Compiled Program 49

 4.3.1 Run Time Library 49

 4.3.2 User-Developed Routines 49

Appendices 51

 Appendix A List & Description of Programs and Library routines 53

 Appendix B Clauses that Require Run Time Routines 59

 Appendix C How CONTROLS are Implemented 61

 Appendix D Using the CHAN File Handler 63

 Appendix E Printer STYLES 65

 Appendix F COBOL Reserved Words Generated by Precompiler 67

 Appendix G Run Time Messages 69

 Appendix H Invocation by LINK or ATTACH Macro 75

Index 77

 Preface v

Preface

Introduction to the Browsable Edition

This is the first version of this manual to be made principally for browsing rather

than for printing. Some significant features have been introduced to the

precompilation process during recent years and the following major topics have

been added:

 COPY REPLACING and REPLACE wildcards, REPLACE ALSO / LAST OFF

(see 1.9).

 Conditional precompilation (>>IF … >>END-IF) (see 1.10).

 OPTFILE facility to hold options (see page 34).

Who should read this Manual?

This publication is intended for:

 technical planning and systems programming personnel engaged in the

installation or customization of the COBOL Report Writer Precompiler,

 personnel who are writing JCL procedures to compile programs

containing Report Writer, for use by application programmers,

 application programmers who need to compile COBOL programs

containing Report Writer, or need additional information on the listings

and other outputs produced by the precompiler.

This publication is designed to help you to:

 understand the basic functions and principles of operation of the

COBOL Report Writer Precompiler, and its relationship to the COBOL

compilers (Part 1), so that you will be able to make an appropriate

choice of the options described in the remaining sections;

 plan for installing and customizing of the COBOL Report Writer

Precompiler (Part 2);

 install and customize the COBOL Report Writer Precompiler under IBM*

z/OS*, (Part 3);

 precompile and compile a Report Writer program under z/OS (Part 4);

You will not require a detailed knowledge of either elementary COBOL or

Report Writer to use this publication. A knowledge of the requirements of the

application programming functions at your installation is necessary in order to

perform the customization tasks.

If your main concern is with the language, and how to code or understand a

COBOL program incorporating Report Writer, you should consult the

Programmer's Manual.

* IBM and z/OS are trademarks of International Business Machines Corporation.

 COBOL Report Writer Precompiler Installation and Operation for z/OS

vi

Related Publications

Precompiler

COBOL Report Writer Precompiler, Programmer's Manual, SC26-4301

 (referred to henceforth as the Programmer's Manual)

COBOL

Language Reference, SC27-8713-02

Customization Guide, SC27-8712-02

Migration Guide, GC27-8715-02

Programming Guide, SC27-8714-02

OS/VS COBOL (all obsolete)

IBM VS COBOL for OS/VS, GC26-3857

IBM OS/VS COBOL Compiler and Library Programmer's Guide, SC28-6483

z/OS

z/OS JCL, SA23-1385-30

 1 - Precompiler: General Information 1

1

Precompiler:

General

Information

This first part provides some basic information on the design

objectives of the COBOL Report Writer Precompiler. It summarizes

the COBOL language features and describes the basic principles

of the precompiler, explaining its relationship to the COBOL

compilers, and the inputs and outputs used in each step. By

reading these sections, you will be better able to make the correct

choice for the options that will be required when you install and

customize this product.

 1 - Precompiler: General Information 3

1.1 Objectives

1.1.1 Purpose of COBOL Report Writer
COBOL Report Writer is a data-oriented addition to basic COBOL that greatly

simplifies the production of all printed output. The language available through

this Report Writer product contains the ANS-68 COBOL Report Writer originally

supported by the OS/VS COBOL compiler, together with the IBM, ANS-74 and

ANS-85 extensions. The implementation covered by this publication also

contains a large number of extensions that greatly expand the power and

usability of the standard features.

The ANS-68 features cover, briefly, the following areas:

 Representation of the main components of the report in two-

dimensional form in the DATA DIVISION by means of LINE and NEXT

GROUP clauses (for vertical spacing) and COLUMN clause (for horizontal

spacing),

 Automatic output of report lines to specified report file(s), controlled by

INITIATE, GENERATE, and TERMINATE statements,

 Automatic storage of SOURCE fields in the report lines,

 Detection of the page-full condition and automatic generation of page

headings and footings,

 Detection of control breaks and automatic generation of control

headings and footings,

 Simple subtotalling, rolling forward and cross-footing of totals.

The extended Report Writer features cover the following areas:

 Rationalization of the syntax with more optional abbreviations,

 Automatic repetition vertically, horizontally, and in blocks,

 COBOL conditions in the REPORT SECTION to control the output of lines,

or report items,

 Subheadings after page or control breaks,

 Option to print CONTROL HEADING groups at top of page,

 Greatly extended functionality of the SUM feature,

 Relative (floating) COLUMN clause, plus CENTER/RIGHT column

positioning,

 Variable-length fields (automatically trimmed),

 Multiple COLUMN and LINE clauses allowed in a single entry,

 Arithmetic-expressions allowed as SOURCE and SUM operands,

 Built-in and user-written FUNCTION facility,

 Page Buffer feature for generation of irregular page formats,

 Multiple Report facility,

 COBOL Report Writer Precompiler Installation and Operation for z/OS 4

 Direction of output through a built-in or user-written file handler to

special devices or spooling software.

The ANS-85 features added in Release 2 of the product were:

 GLOBAL and EXTERNAL report files,

 GLOBAL reports, and access to them from contained programs,

 Existing elements (e.g. SOURCE) extended to allow new ANS-85 features.

The features added in Release 3 of the product were:

 Use of compiler's EXIT feature,

 Generation of pure SAA* COBOL code,

 No dependence on run time routines for (legacy) OS/VS COBOL sources,

 In addition, an option to eliminate most dependence on run time

routines for new programs by copying sources of COBOL run time

routines as nested programs (RTNEST option),

 Many new data clauses: see Programmer's Manual,

 Option to skip the precompilation automatically when the source

contains no Report Writer code (*CONTROL RW/NORW),

 Option to show line numbers of intermediate source (LGSEQ option) for

on-line debugging, plus other listing features,

 Automatic skip-to-channel feature,

 DBCS support,

 Amendments for the handling of listings from Release 3.2 of VS COBOL II.

The features added in Release 4 of the product are:

 Full compatibility with current IBM COBOL compilers and Language

Environment/370*,

 Installed by SMP/E.

The features added in Release 5 of the product are:

 Conditional precompilation (>>IF … >>END-IF etc.),

 COMPVAR option to set conditional variables,

 Full NATIONAL support,

 Same report to multiple files,

 PAGE LIMIT integer COLUMNS, now regarded as preferable to LINE LIMIT,

 NEXT GROUP NEXT PAGE WITH RESET,

 LAST CONTROL HEADING clause of PAGE LIMIT,

 support for 2002 Standard.

The features added in Release 6 of the product are:

 re-structuring to support “Vnext” COBOL 5.1, 5.2, 6.1, 6.2 and 6.3, whilst

still supporting COBOL 4.x,

 1 - Precompiler: General Information 5

 License codes to aid security,

 OPTFILE facility (shared with compiler) to hold options (Release 6),

 passive support for XML syntax

 new style NARROW,

 SYSUT11 changed to RWWORK.

For additional information on the syntax and facilities provided within the

language itself, you should refer to the Programmer's Manual.

1.1.2 Purpose of the Precompiler
This product gives you two different methods of processing a COBOL program

containing Report Writer code. Both methods provide the same language

features, because, from the top level, they use the same precompiler phases.

 Using the compiler's EXIT option.

With this method, the precompiler runs under the control of the compiler.

You use the COBOL compiler as you would for a basic COBOL program,

except that you include an INEXIT(RW) option. There is also a

PRTEXIT(RW) option which modifies the compiler's listing by printing the

original source code instead of the expanded code. Both can be

permanently selected when you customize the compiler.

To specify them as parameters to the compiler, you code:

EXIT(INEXIT('parameters',RW),PRTEXIT(RW))

or, to use their abbreviated forms:

EX(INX('parameters',RW),PRTX(RW))

By this method, the compiler appears to handle Report Writer itself

as a built-in part of COBOL.

If you need the compiler's EXIT option for another preprocessor, you

can still use this method, because the precompiler has its own EXIT

option, similar to the compiler's. This may also be permanently

selected by customization (including any parameter strings). If you

need the EXIT option for a third-party librarian product, you can use

the LIBEXIT subparameter of either the precompiler's or the

compiler's EXIT option for this purpose.

You will need a certain amount of extra virtual memory for the

largest programs when you use the EXIT option, since the

precompiler and its own data areas must be loaded in memory at

the same time as the compiler's initial phase. However, the

precompiler is deleted from memory during the principal

compilation phases.

 COBOL Report Writer Precompiler Installation and Operation for z/OS 6

 Using the stand-alone precompiler.

The alternative to using the EXIT option is to run the precompiler as a

separate step. Here, the precompiler runs in "preprocessor mode".

It scans the source program for any Report Writer elements, and

converts them to basic COBOL, leaving the rest of the source

program unchanged. The resultant intermediate source program is

written to the output. This may then be compiled normally as a

second step.

You must use the stand-alone precompiler if, for any reason, you

need to access the intermediate source code.

1.1.3 Benefits

Whichever method you use, using a precompiler brings you these benefits:

 It enables the "higher-level" COBOL features to be enhanced without all

the complications of installing a new compiler. (New releases of this

product do not necessarily coincide with new releases of the compiler.)

 It makes it easier to provide good Programmer's documentation,

because Report Writer is now far too rich to summarize in just one

chapter of a COBOL language manual.

 It eases the debugging of Report Writer programs, because the

generated COBOL code can be listed and looked at if required, or

viewed via the on-line debugger.

1.2 Migration from OS/VS COBOL

The precompiler enables you to use any current IBM COBOL to compile your

“legacy” source programs written for OS/VS COBOL that incorporate Report

Writer, without needing to convert or re-write the Report Writer code. The

precompiler also enables you to continue to use Report Writer in new programs,

with the additional benefit of a greatly enhanced set of features. All the ANS-

85- features affecting Report Writer are supported. The additional ANS-85

Report Writer features are also supported.

The precompiler processes only the Report Writer syntax in your program. Before

attempting to precompile and compile it for the first time, you should first ensure

that all the remaining (non-Report Writer) COBOL code in the program will be

acceptable to the compiler.

Most OS/VS COBOL Report Writer source programs are accepted completely

unchanged by the precompiler. Where OS/VS COBOL has allowed a "doubtful"

or non-standard Report Writer construction, in the great majority of cases the

precompiler issues a Warning message and still accepts the code. Generally

speaking, the precompiler is stricter than the older compilers, so quite a number

of Warning messages may be issued. Sometimes the message indicates a

serious previously undetected flaw in the coding that must be attended to.

Details of all these discrepancies and suggested means of avoiding them will be

found in part 6 of the Programmer's Manual.

 1 - Precompiler: General Information 7

1.3 Precompiler System Overview

The diagrams on this page give you a pictorial view of how the precompiler

operates.

Using INEXIT(RW),PRTEXIT(RW)

IBM COBOL

Initialization

and Copy

phases

main

phases

Lister and

other print

phases

 ▲ ▲

 │ │

 SYSIN ▼ ▼ SYSPRINT

Source

Program
─►

INEXIT(RW)

phase

PRTEXIT(RW)

phase
─►

Source

Listing

Using the Stand-alone Precompiler

 SYSIN SYSINS=SYSIN SYSPRINT

Source

Program
─►

Precompiler

(SPCRWCOB)
─►

Intermediate

Source
─► Compiler ─►

Source

Listing

1.4 Notes on Precompiler Operation

 Basic COBOL Sources

If the source program contains no Report Writer code, it is possible to

bypass the precompiler's conversion routines by placing a **CONTROL

NORW compiler-directing statement as the first or second line of the source

(see 1.8.1 for details). This causes the precompiler to pass its input directly

to its output and thus saves processing time, enabling you to use the same

JCL for all COBOL sources. (Alternatively, you can specify that only those

programs with a **CONTROL RW compiler-directing statement at the start

of the source are to be precompiled.) If a non-Report Writer source

escapes this filtering process and is unnecessarily precompiled, it emerges

unchanged in the precompiler's output (apart from some comments

inserted by he precompiler).

 COBOL Report Writer Precompiler Installation and Operation for z/OS 8

 Messages

Embodied in the precompiler are a comprehensive range of error, warning

and informational messages which are issued for every conceivable syntax

error. An explanation of each precompiler message will be found in the

Programmer's Manual.

If the FLAGSTD option is specified, the precompiler will issue an

informational FIPS- message against elements of the Report Writer code

where appropriate.

 COPY books

If your source program contains COPY, BASIS or REPLACE statements, the

precompiler will expand them unless you specify the NOCOPY option.

(Note that only the simple BASIS statement, without INSERT or DELETE is

allowed.) Thus, your COPY books may contain Report Writer code.

 Virtual and disk memory

The precompiler needs a minimum amount of virtual storage space for its

own use, but also makes use of basic disk space as overflow to hold its

tables and work areas. For this purpose it uses a data set RWWORK.

1.5 Purpose of PRTEXIT(RW)

If you use PRTEXIT(RW), this routine is invoked by the compiler to print the whole

of the source listing in a compact form that makes the source easy to

understand and maintain. It embeds the original source program in the

compiler listing and does not print the intermediate code (unless you specify

MGENER). In addition, it copies the other parts of the listing (MAP, XREF etc.)

and alters the line numbers so that they correspond to the original source. Any

messages from the precompiler and the compiler are combined and printed as

a single set. This is especially important because the precompiler relies on the

compiler to report certain syntax errors in the REPORT SECTION. If the

precompiler phase is successful, this does not guarantee that the original code

is error free. For example, the validity of a data name coded in a SOURCE

statement is not checked by the precompiler but by the compiler.

PRTEXIT(RW) conceals the distracting intermediate data definitions and

procedural code. You do not need to "jump" from the original to the

intermediate source listing to find an entry in the Cross Reference, Data Map, or

Offset listing. The listing is presented in a manner close to that which you might

have expected if there had not been a precompiler at all and the compiler

had in fact handled the higher COBOL syntax itself. It is similar to the listing you

are used to working with if you used OS/VS COBOL in past times.

If PRTEXIT(RW) is not used, your listing is printed in two parts: the original source

listing, printed by the precompiler, with any Report Writer error messages, and

the intermediate source listing, printed by the compiler, together with any basic

COBOL error messages and any additional compiler listing options.

 1 - Precompiler: General Information 9

1.6 Options and Customization

A number of options are provided to control the precompilation and listing.

Some are specific to the precompiler, while others, such as ADV, and

QUOTE/APOST are shared by the precompiler and the compiler. If INEXIT(RW) is

used, the precompiler will obtain the values of these shared options from the

compiler and you do not need to specify them separately. All the precompiler

options can be specified when the precompiler is customized. If the INEXIT(RW)

method is not used, the shared options must also be specified in this way,

because the precompiler then runs quite separately from the compiler.

The Customization Routine (CXRCUST) may be used to select or alter the default

values of these options.

1.7 Run Time Library

A run time library is provided with the precompiler. However, Report Writer in

principle do not depend on a run-time system. These routines are needed only

occasionally for the more advanced functions. A detailed description of this

library will be found in 2.2.

1.8 Elements of Input Source

The purpose of this section is to describe how the precompiler handles some of

the input source elements, apart from the Report Writer syntax itself, which is fully

described in the Programmer's Manual.

1.8.1 Compiler-Directing Statements

The precompiler responds to certain compiler-directing statements. The

following list shows the effects of each statement.

*CONTROL/*CBL

*CONTROL (*CBL) SOURCE/NOSOURCE are acted upon by the

precompiler in producing its own listing. They are also passed to the

compiler.

*CONTROL (*CBL) LIST/NOLIST and MAP/NOMAP are not acted upon by

the precompiler but are passed to the compiler. They will therefore be

used by the compiler in suppressing parts of its own LIST and MAP listings,

and this will be reflected in the final listing whether or not PRTEXIT(RW) is

used.

*CONTROL RW and *CONTROL NORW are recognized only by the

precompiler. (**CONTROL may be written instead of *CONTROL so as not

to cause a compiler error if you compile the source directly.) This

directive must occupy the first or second line of the source. *CONTROL

 COBOL Report Writer Precompiler Installation and Operation for z/OS 10

RW tells the precompiler to convert any Report Writer code in the

source. **CONTROL NORW tells the precompiler that there is no Report

Writer code in the program and that it may therefore bypass the

precompiler and pass the original source directly to the compiler. If both

forms of this statement are absent, the setting of the RW/NORW option

(as customized or given explicitly in the PARM) is used.

BASIS, INSERT, DELETE

The precompiler recognizes the BASIS statement and will copy the

source program specified. However, it does not recognize INSERT and

DELETE statements.

CBL/PROCESS

The precompiler recognizes the CBL (or PROCESS) directive, processing

any precompiler or shared options (see 2.3.3) and passing any compiler

or shared options on to the compiler. CBL may begin anywhere from

column 2 onwards. PROCESS may begin anywhere from column 7

onwards but is otherwise a synonym for CBL. This directive must be the

only item on the source line.

A CBL/PROCESS directive must normally be the first item in the source,

apart possibly from conditional precompilation (>>IF …). However, you

can code any number of CBL/PROCESS lines together at the start.

Furthermore, if the CBL/PROCESS contains only Precompiler options (such

as COMPVAR) you can place it at any logical position further down the

source.

You can combine precompiler options, shared options and compiler

options in the same directive. For example:

 CBL CV(PET=”CAT”),QUOTE,TRUNC(OPT)

COPY

The precompiler processes this statement in all its forms, unless NOCOPY is

in effect, when it is passed across unaltered. For a full description,

including SPC extensions, see the COPY … REPLACING and REPLACE.

EJECT, SKIP1, SKIP2, SKIP3

These statements are passed to the compiler and therefore affect the printing

of the source listing in the usual way. Blank lines and a slash ("/") in column 7

may be used for a similar purpose.

ENTER

This statement is passed unchanged to the compiler.

EXEC...END-EXEC

Any code between these two keywords is copied unchanged, thus

allowing full use of DB2 (SQL), CICS and other COBOL extensions that use

this format in their command language.

 1 - Precompiler: General Information 11

REPLACE

The precompiler processes this ANS-85 statement in all its forms, unless

NOCOPY is in effect, in which case REPLACE statements are passed

unchanged to the compiler. Processing of the source lines containing

REPLACE is similar to that for COPY above, including its extensions.

REPLACE can affect code brought in by a COPY (but not the COPY itself)

and, if the COPY has a REPLACING phrase, the text is subject to change

from both the REPLACING and the REPLACE (in that order). For full

details, see COPY … REPLACING and REPLACE below.

SERVICE LABEL

This (legacy) statement is not recognized and, like all Procedure Division

items that are not specifically recognized by the precompiler, will be

passed to the intermediate source unchanged.

SKIP1, SKIP2, SKIP3 - see EJECT above.

TITLE

This statement will be recognized and used by the precompiler in printing

the page headings of the program source listings. It is also passed

unchanged to the intermediate source.

USE

All USE statements are passed unchanged to the intermediate source,

except for the USE BEFORE REPORTING... statements which are processed

by the precompiler and not passed to the compiler.

1.8.2 Sequence Numbers
Sequence numbers in columns 1 to 6 are passed unchanged by the

precompiler to the compiler in any line that is altered or copied unchanged.

The precompiler's own generated lines have blanks in these columns. The

NUMBER option cannot be used with PRTEXIT(RW).

1.8.3 Comment Lines

Comment lines, containing a "/" or "*" character in column 7, are ignored by the

precompiler (apart from causing a page advance in the case of "/") and

passed unchanged to the compiler. In-line comments beginning “*>” are also

recognised.

Any character in column 7 other than “/”, “*”, "D" and space is also assumed to

be a comment and is passed across unchanged, thus allowing for other

preprocessors that rely on a special character in column 7.

 COBOL Report Writer Precompiler Installation and Operation for z/OS 12

1.8.4 Debug Lines

The precompiler correctly processes debug lines (those with a "D" in column 7) in

the following manner:

a. If WITH DEBUGGING MODE has been coded in the SOURCE-

COMPUTER entry, debug lines are treated as normal lines, each

"D" is removed, and the lines processed.

b. If WITH DEBUGGING MODE is not found in the SOURCE-COMPUTER

entry, debug lines are treated as comment lines and are passed

to the intermediate source unchanged, where it is the compiler's

responsibility to ignore them.

1.8.5 Identification Columns

The contents of columns 73-80 are retained by the precompiler in any line that is

altered or copied unchanged. In precompiler generated source lines these

columns contain the characters:

 " RWnnnn+" or " RWnnnn="

where nnnn is the version/release number.

1.8.6 Nested and Batched Programs

The input source may have ANS-85 contained programs and "batched"

programs (consisting of non-nested programs each terminated by an END

PROGRAM header).

1.9 COPY … REPLACING and REPLACE

The Precompiler processes COPY and REPLACE statements unless the NOCOPY

option is specified. (So it is important to note that that the stand-alone REPLACE

statement is also affected by COPY/NOCOPY.) Copied text may itself contain

COPY statements, up to six levels of nesting and REPLACING may be used at

any level.

Lines containing the word COPY, up to the closing period, are passed to the

compiler with an asterisk (*) in column 7. If COPY is not the first word in the line,

the line is split into two lines to make it so.

In addition to the standard COPY statement, the precompiler allows the

following extensions:

1.9.1 Wild Cards

A wild card is the combination "??" which matches any non-null string which

may be the whole or part of a word, or a “literal”. For example:

 1 - Precompiler: General Information 13

COPY member REPLACING ==VALUE ??== BY ====.

The replacement text may optionally also contain the same number, or fewer

wild cards, in which case the values of the “wild cards” are substituted in the

replacement text, from left to right. For example:

REPLACE ==WS-??-DATE PIC ??==

 BY ==WS-??-DATE2 PICTURE ??==.

will convert: 01 WS-EXPORT-DATE PIC 99.

 to: 01 WS-EXPORT-DATE2 PICTURE 99.

1.9.2 LEADING and TRAILING

The word LEADING means that any word will match if it begins with the given

value. Similarly, TRAILING produces a match if a word ends with the given value.

For example:

REPLACE LEADING ==RS-== BY ==WS-REP-.

will convert every data name beginning with RS- to the same beginning WS-REP-

.

1.9.3 REPLACE ALSO and REPLACE (LAST) OFF

The standard REPLACE feature is restrictive in that a REPLACE statement cancels

any previous REPLACE. So you cannot place a REPLACE in a COPY member

confident that it will not affect a REPLACE in the main source. The syntax

REPLACE ALSO retains the effect of any previously existing REPLACE and the

result is cumulative. (If there is no existing REPLACE, then REPLACE ALSO is the

same as REPLACE alone.) For example, if the first REPLACE statement is:

REPLACE ==CHICKEN== BY ==HEN==, ==COCKEREL== BY ==ROOSTER==.

and the next REPLACE is:

REPLACE ALSO ==CHICKEN== BY ==FOWL==, ==DUCK== BY ==GOOSE==.

then the cumulative effect is:

REPLACE ==CHICKEN== BY ==FOWL==, ==COCKEREL== BY ==ROOSTER==,

==DUCK== BY ==GOOSE==.

The syntax REPLACE OFF. cancels the effect of all current replacements.

The syntax REPLACE LAST OFF. cancels only the most recent REPLACE in effect

and restores the situation to exactly what it was before that REPLACE. So

REPLACE LAST OFF may be paired with a REPLACE ALSO, for example in a COPY

member, to ensure that these statements do not affect the surrounding code.

These pairings may be nested. For example, in the case described above, a

REPLACE LAST OFF. will result once again in:

REPLACE ==CHICKEN== BY ==HEN==, ==COCKEREL== BY ==ROOSTER==.

 COBOL Report Writer Precompiler Installation and Operation for z/OS 14

1.10 Conditional Precompilation

1.10.1 Usage

Conditional Precompilation is a method of selecting or deselecting certain lines

of source code. In the following code:

>>IF country=”Belgium”

 ... any COBOL source lines

>>END-IF

the source lines inside the >>IF…>>END-IF construction will be ignored by the

Precompiler if the variable country is not equal to “Belgium”. Variables are

defined by means of the COMPVAR option, e.g.

COMPVAR(country=”Germany”)

As with other options, the COMPVAR (or CV) option can be defined outside the

program source (via the PARM or customization or OPTFILE) or inside the

program source via the CBL/PROCESS directive.

Conditional Precompilation is applied to the whole source, not only the parts

with Report Writer syntax. The syntax may be used in any sections of the COBOL

source program.

By default, the Precompiler will process conditional statements which are

prefixed by a double chevron “>>”. The CONDC option may be used to

indicate the prefix or its non-use. CONDC(S) is the default setting (“S” =

“Standard”). The option NOCONDC causes the Precompiler to ignore this

syntax and pass it intact to the compiler. You may specify an alternative single

character to be used instead of “>>” by coding the option CONDC(character).

For example, CONDC(?) would expect the syntax ?IF … etc.

1.10.2 Syntax

In the following, the standard “>>” prefix is assumed for the purpose of

illustration. The following directives may begin in any column from 7 onwards. A

directive must be the only item on a source line.

Directives may be nested up to eight levels.

1.10.2.1 >>DEFINE directive
>>DEFINE variable AS PARAMETER

This directive states that the variable will be used for conditional precompilation.

It should precede any use of the variable in the subsequent code. If the DEFINE

directive is omitted, the syntax:

>>IF variable IS [NOT] DEFINED

will deliver a value false, or true if NOT is present.

 1 - Precompiler: General Information 15

If the DEFINE directive is omitted for a variable which is used in a test for a value

(i.e. variable=“value”), the Precompiler will issue a diagnostic message and

treat the variable as defined.

1.10.2.2 >>IF directive
>>IF condition

 … any COBOL source lines

 [>>ELSE-IF condition

 … any COBOL source lines]

 [>>ELSE

 … any COBOL source lines]

>>END-IF

The condition may be

(a) variable IS [NOT] DEFINED

(b) variable [NOT] = value [AND|OR variable [NOT] = value]…

(c) variable = value OR value [OR value …]

In format (b) you cannot mix AND and OR (the format does not admit

parentheses).

Note the >>ELSE-IF option which is unique to this precompiler. If is equivalent to

placing an >>ELSE and a nested >>IF inside the construction.

The code following >>ELSE will be used if the condition is false.

>>END-IF is required to end the construction.

The source lines inside the construction may be absent, or comments, or other

directives, or whole or part of one or more COBOL definitions or statements, for

instance:

MOVE

 >>IF language=”Spanish”

 “Hola”

 >>ELSE-IF country=”France”

 “Salut”

 >>ELSE

 “Hello”

 >>END-IF

TO greeting.

1.10.2.3 >>EVALUATE directive
>>EVALUATE variable

[>>WHEN [NOT] DEFINED

 … any COBOL source lines]

[>>WHEN value

 … any COBOL source lines

 [>>WHEN value

 … any COBOL source lines]]

 COBOL Report Writer Precompiler Installation and Operation for z/OS 16

[>>WHEN OTHER

 … any COBOL source lines]

>>END-EVALUATE

Note that the Precompiler’s >>EVALUATE syntax is more basic than the syntax

provided by the Standard used by the IBM COBOL compiler. You may specify

(NOT) DEFINED or any series of values, or both. >>WHEN OTHER plays the same

role as >>ELSE in the >>IF directive. As an example:

>>EVALUATE country

>>WHEN NOT DEFINED

 …

>>WHEN “Germany”

 …

>>WHEN “France”

 …

>>WHEN OTHER

 …

>>END-EVALUATE

1.10.2.4 Pre-defined variables

Certain variables are pre-defined by the platform on which you run. They are

distinguished by the character “&” at the front. Fixed values on the z/OS

platform are:

&TYP=”IBM”, &VSN=”IBM”, &OS=”ZOS”, &ALPH=”EBCDIC”,

&COMP=”4”, &MINC=”2”, &FMODE=”value-of-mode”

Pre-defined variables are used to produce “universal” or multiple-platform

sources which can be compiled on different processors, under different

operating systems. In the above list, &COMP=”4” indicates big-endian whilst

&COMP=”5” would indicate little-endian, e.g. Intel. &MINC=”2” means that the

minimum size of a COMP item is 2 bytes (&MINC=”1” would indicate that a

PIC 99 COMP item occupies one byte). &FMODE is the setting of the FMODE

option, or blank.

1.11 Intermediate Source

If you use INEXIT(RW), there is no physical output from the precompiler and the

only sight you may have of the intermediate (that is, converted) code is in the

compiler listing (or the listing from PRTEXIT(RW) if you specify MGENER).

The intermediate source is produced by the stand-alone precompiler. It consists

of the original source program, suitably modified and with additional generated

COBOL code. Although the code is clear and modular in construction, it was

designed primarily to be compiled efficiently, rather than to be inspected and

understood. If you make any permanent alterations to the intermediate source,

you and subsequent users will be unable to repeat the precompilation without

losing the changes. Alterations to the intermediate source are therefore not

recommended under any circumstances.

 1 - Precompiler: General Information 17

1.12 Source Listings

The following listings are produced on SYSPRINT by the stand-alone precompiler:

 Precompiler options in effect,

 Precompiler's listing of the original source,

 Any precompiler messages.

If you use INEXIT(RW) but not PRTEXIT(RW), you will obtain the same listings on

SYSLIST-, followed by the compiler's usual listing of the intermediate source on

SYSPRINT, depending on the compiler options specified.

If PRTEXIT(RW) is specified, you will obtain a single unified listing on SYSPRINT, with

the following features:

 In the front sheet, the compiler's and the precompiler's options are

shown side-by-side.

 The source listing (if SOURCE is in effect) shows the original source

program. If the MGENER option is specified, precompiler generated

source lines are shown merged into the original source.

 Messages from both the precompiler and the compiler are combined

into a single set, and printed according to the FLAG option. If the

second operand of FLAG is in effect, they are also embedded in the

source listing. Some compiler messages that refer to unseen precompiler

generated source lines are not embedded but appear only at the end.

The messages displayed may include any produced as a result of the

FLAGSTD, FLAGSAA, or FLAGMIG options.

 The compiler's embedded XREF and embedded MAP, if specified, are

placed correctly against the lines to which they refer.

 Sequence numbers of the corresponding intermediate source lines are

printed over the original sequence numbers, if LGSEQ is in effect.

 Additional features of the compiler listing will, if specified, be modified by

PRTEXIT(RW) as follows:

VBREF causes the Cross Reference of Verbs to be printed, with line

numbers changed to refer to the original listing.

XREF causes the Cross Reference listing to be printed both embedded

in the source and as a separate listing, with the line numbers changed

to show the line numbers of the original source listing.

MAP causes the Data Division map to be printed with its line

numbers changed to show the line numbers of the original source

listing.

OFFSET causes the Procedure Division offset summary to be printed

together with Global Tables, Literal Pools, etc. Line numbers are

changed to show the line numbers of the original source listing.

 COBOL Report Writer Precompiler Installation and Operation for z/OS 18

LIST causes the compiler's assembler-language listing to be printed

with line numbers changed to show the line numbers of the original

source listing.

The summary and statistics are also printed in suitably modified form.

The illusion that the compiler performed the Report Writer processing itself is

occasionally broken by certain features which may nevertheless prove useful:

c. PRTEXIT(RW) does not suppress generated data names and

procedure names and a number of names with the prefix R- -

usually appear, many bearing the same sequence number that

coincides with an RD entry or a report group. These items may

be ignored if not relevant.

d. The XREF and MAP will not show the standard names for the

Report Writer locations that are reserved words, namely PAGE-

COUNTER and LINE-COUNTER. You must therefore look them up

under their internal names, R--rPCT and R--rLCT (r = report

number).

e. The XREF will not show DETAIL report group names used in a

GENERATE, or report names used in an INITIATE, GENERATE or

TERMINATE, or any of Report Writer's internal references (such as

SUM...UPON or COUNT).

f. The XREF and MAP will not show the RD entry, and the FD entries

for report files that use a file handler will have been re-located.

g. In the VBREF, OFFSET, and LIST, any INITIATE, GENERATE, or

TERMINATE statements will not appear as such but as PERFORM

statements. Report Writer SET and SUPPRESS statements will

appear as MOVE statements. In addition, the precompiler-

generated statements will have been taken into account in the

VBREF. LIST always shows the whole of the Procedure Division,

corresponding to the statements in the intermediate source.

h. If RTNEST is in effect, the locations belonging to the run time

routines appear in any VBREF, XREF, MAP, OFFSET, and LIST.

i. If TERM is in effect, the line numbers displayed by the compiler as

those of the intermediate, not the original, source.

1.13 Return Codes

The return code from the precompiler depends on the highest severity level of

the precompiler messages using the same convention as the compiler. If

INEXIT(RW) is used, the return code is the higher of the return codes from the

precompiler and the compiler. A return code of 1 is given by the stand-alone

precompiler if it immediately exits as a result of the NORW option or the

**CONTROL NORW statement.

 1 - Precompiler: General Information 19

1.14 Debug

The TEST option can be used to enable on-line debugging in the usual way.

Since the compiler sets up the debug information using the intermediate source

as a reference, this will be the source shown on your terminal, whatever other

options you specify. If the debugger reaches the point where an INITIATE,

GENERATE, or TERMINATE statement had been coded, you will see a PERFORM

statement. If you allow the debugger to execute the PERFORM you will step

through the logic of the Report Writer statement. However, if you do not

suspect any problems with the Report Writer logic, you can use break-points to

proceed directly to other parts of the program, avoiding the Report Writer

code. The line numbers of the intermediate source will not be the same as the

original line numbers, but it is possible to perform most debugging operations by

referring to data-names and procedure-names (which are not changed by the

precompiler). If you need to use line numbers, you should either obtain a listing

of the intermediate source, by specifying NOPRTEXIT or by using the stand-alone

precompiler, or you should use the LGSEQ option which prints the compiler's line

numbers against the original source.

1.15 Output from Report Writer Programs

1.15.1 Basic Printing

The normal output from a Report Writer file is a basic sequential file produced by

a series of generated COBOL WRITE statements. The block size, logical record

length and organization are therefore established from the FD clauses,

supplemented by JCL. However, note that some features cause a report file

handler to be used instead of generated WRITEs. See the Programmer’s Manual

for details, together with some restrictions that result from using a COBOL file

handler.

1.15.2 Special Printing

If the output device is not a regular printer, and needs special codes or control

characters, or special software routines, output can be generated for it using a

special user-written file handler. These are fully described in the Programmer's

Manual. Even if the output is to a regular printer, a file handler may be used to

achieve a particular technical objective, such as the use of printer channels

(see Appendix D), output from a modular system, or output without page feeds

(see Appendix A and Programmer's Manual).

1.15.3 Special Effects

The STYLE clause, by which special printer effects can be introduced, such as

UNDERLINE and HIGHLIGHT, is described in the Programmer's Manual. The

available printer TYPEs together with their available STYLEs are listed below in

(See Appendix E).

 2 – Planning and Preparation for Installation 21

2

Planning and

Preparation for

Installation

This part describes the minimum hardware and software

requirements for the installation and use of the COBOL Report

Writer Precompiler. It also describes the options available for

customization and the planning you should perform before

installing the product.

 2 – Planning and Preparation for Installation 23

2.1 Requirements for Precompiler

2.1.1 Minimum Hardware and Software Requirements

This product is designed to run on any IBM System z or zEnterprise system, or any

compatible system that runs z/OS with IBM COBOL and Language Environment.

It does not rely on any z-architecture features and will therefore run, in theory,

on any “legacy” system on which z/OS is installed. SMP/E, Release 5 or later, is

required for installing.

2.1.2 Size and Memory Requirements

Fixed Memory Requirements

The precompiler occupies a fixed amount of virtual storage but also requires

variable amounts, depending on the size of the source programs, of both virtual

storage and auxiliary (direct access) storage. The approximate fixed sizes of the

programs that make up the precompiler are given in the table below. If you use

INEXIT(RW) you need to add them to the maximum memory required by the

compiler to calculate the size of the REGION required.

 Program Size (K)

 INEXIT Maximum Program Size 400

 PRTEXIT 50

 Stand-alone Precompiler 400

Because the precompiler is written in COBOL, the size of the LE run-time

environment should be included.

If memory is limited, a SIZE option may be included to restrict the memory

allocated by the compiler for its own use, for example: SIZE(1024K).

Variable Memory Requirements

The precompiler will also use virtual memory above its minimum requirement

when this is available. Where memory is not available, it will use DASD work

space (RWWORK).

2.1.3 Data Set Requirements

The stand-alone precompiler requires the following data sets:

 SYSIN (input source),

 SYSINS (intermediate source),

 SYSPRINT (output listing).

 COBOL Report Writer Precompiler Installation and Operation for z/OS 24

The INEXIT(RW) routine may require the following data set:

 SYSLIST (output listing, only if PRTX(RW) is not used).

All versions of the precompiler require the following data sets:

 RWWORK, working data set,

 SYSLIB, or any library name(s), for the source library, if COPY statements

are present and the COPY option is in effect.

2.2 Requirements for Run Time Library

2.2.1 What Run Time Services are Required?

Run time routines are segments of code which are coded separately and

brought in by a generated CALL rather than generated as in-line code. These

routines are used only occasionally to perform certain more complex functions

that cannot easily be generated as in-line code. If the option NOXCAL is

specified, no run time routines will be invoked by an unchanged OS/VS

program. Certain additional run time routines (file handlers and FUNCTION

routines) may be written by the user.

The names and functions of the run time routines will be found in Appendix A.

Appendix B lists the language features or options that cause a run time routine

to be used. Note that a few of the routines are written in Assembler rather than

COBOL, so, if you intend to maintain a "COBOL-only" system, you may wish to

avoid the few indicated language elements or options that cause them to be

invoked.

You should also refer to Appendix C to understand the important topic of how

CONTROLS are implemented.

2.2.2 How Run Time Routines are Incorporated

The way that COBOL run time routines are incorporated into your program

depends on your use of the RTNEST option, as follows:

1. Using RTNEST

The routines are placed in the program in source form as nested

programs (an ANS-85 feature). Nested programs are incorporated by

means of a COBOL COPY into the outer (or only) program of a nested

structure. The SUPPRESS option of COPY is used so that they do not

appear in the program listing. (Hence it is advisable to keep the listing of

the entire COBOL library, which you normally receive if you compile

them during installation.) Source modules are supplied in two libraries

which are alike except that one uses QUOTE and the other APOST.

Advantages of using RTNEST are:

 2 – Planning and Preparation for Installation 25

a. You do not need to remember to include parts of the run time

library when you want to transfer the programs to a different

computer system.

b. You guarantee that the run time routines are compiled with the

same compiler options (RENT/NORENT etc.) as the program itself.

c. You need not worry about the effect of the DYNAM option as

nested programs are always called statically.

2. Using NORTNEST

The routines are incorporated in object form. Since they are invoked by

a generated COBOL CALL, there are two ways they can be brought in,

depending on your choice of DYNAM or NODYNAM when you compile

the application program. If NODYNAM is in effect, they will incorporated

by the link editor. If DYNAM is in effect, they will be called dynamically

at run time. In case DYNAM may be required, load module versions of

each run time routine are provided in the run time library.

Some routines are always called dynamically, because they are invoked

via CALL identifier. They are as follows:

a. All file handlers,

b. The Page Buffer handlers CXRPBFnn, invoked whenever the WITH

PAGE BUFFER clause is used,

c. The STYLE handler CXRSTYLE, invoked whenever the STYLE clause

is used.

Because of these dynamic CALLs, it is necessary to specify the RESIDENT

compiler option if any of these features are used. The supplied OBJECT

versions of the COBOL run time routines were compiled with the RESIDENT

option, so, if the NORESIDENT option is to used, the COBOL routines must

be re-compiled at installation time.

Advantages of NORTNEST are:

a. You need not worry about the use of Assembler run time routines

(listed in the previous section).

b. Nested programs are not currently an SAA COBOL feature.

c. They eliminate the overhead of repeatedly re-compiling the run

time routines and reduce the size of the main object module.

d. They can be shared (by use of the RENT option) between several

run units.

e. Only this method works with the (historic) CMPR2 option, because

CMPR2 does not allow nested programs.

Routines written in Assembler are always incorporated in object form.

 COBOL Report Writer Precompiler Installation and Operation for z/OS 26

2.2.3 Re-Generating Run Time Library

For the z/OS version, the run time library was generated using your own recent

IBM COBOL and Assembler H, as appropriate. The only options originally used in

the compilations that could affect operation were as follows:

 DATA(31),NOOPTIMIZE,OUTDD(SYSOUT),NORENT,

 NOSSRANGE,NOTEST

Your delivery media contain a source copy of each run time routine, together

with JCL to re-compile them all. This apart, the usual reason for re-generating

the library is to change the compiler options. If, for example, you want the RENT

option, then you must re-compile all the COBOL run time routines.

2.3 Preparing to Customize

2.3.1 Why Customize?

The Customize step is required when you install the precompiler (and certain PTF

updates) because the LICENSE setting is compulsory. The precompiler is

delivered with each of the other available options set to its default value,

indicated by underlined choices in 2.3.3 below. If you want to change any of

these defaults, you can include these settings in the Customize step. You can

repeat it at any time if you decide to alter your installation defaults. You may

wish to make modifications for any of the following reasons:

 You may need to ensure that stand-alone precompiler's defaults agree

with those you established when you customized the compiler, for

example in the use of APOST or QUOTE. This is not necessary if you

always use INEXIT(RW) as this obtains these defaults from the compiler.

 There may be a constant requirement among applications programmers

for certain features such as FMODE or PPSNS. You may wish to pre-set

the default values of these options so that the programmers are certain

to use them as standard. (But see also the OPTFILE option.)

If you will be using INEXIT(RW), you need only worry about the options marked

precompiler only, since the compiler's default values are used for all the options

shared with the compiler (QUOTE, ADV, etc.).

Your delivery media contain JCL to perform the customization step. This step

runs the compiler and link editor to create a new copy of the customized

options module SPCHOPTS.

2.3.2 How Options Control the Precompilation

The precompiler's options are described in the section that follows. Options may

be specific to the precompiler or they may be common to the precompiler and

the compiler, in which case they take exactly the same form as the standard

compiler options.

The options specific to the precompiler are:

 2 – Planning and Preparation for Installation 27

List A: COMPVAR, CONDC, COPY, CTRLEN, EXIT, FMODE, LGSEQ, MGENER,

 MONIT, OSVS, PPSNS, RTNEST, RW, XCAL

 (note that a different EXIT parameter is also used by the compiler)

The options shared by the precompiler and the compiler are:

List B: ADV, CMPR2, DBCS, FLAG, FLAGSTD, LANGUAGE,

 LINECOUNT, OPTFILE, QUOTE/APOST, SEQUENCE, SIZE, SOURCE,

 SPACE, TERM

There are three ways by which options may be specified, in priority order, lowest

to highest:

1. By customizing them permanently (see 2.3.1),

If you are using INEXIT(RW), you need do this only for options which are

specific to the precompiler (List A). The shared compiler options (List B)

will be obtained from the compiler whatever value you customize. If you

will be using the stand-alone precompiler you should ensure that the

settings of shared options (List B) agree with those you chose when you

customized the compiler.

2. By coding them as parameters with each (pre)compilation.

If you are using INEXIT(RW), options specific to the precompiler (List A)

must be placed in the 'parameter string' of the INEXIT, for example:

 EXIT(INEXIT(' 'COPY,NOOSVS' ',RW))

You can place all or additional options in the SYSOPTF file and bring

them in by coding the OPTFILE option (see page 34) in the place where

you would otherwise have coded the options.

The PRTEXIT does not take a parameter string. Even if the options apply

chiefly to the listing, they should be coded with the INEXIT.

If you are using the stand-alone precompiler, the options are placed in

the parameter string to the program SPCRWCOB.

Shared options (List B) are placed in the main parameter string where

they will be picked up both by the precompiler and (if you are using

INEXIT(RW)) by the compiler, for example:

 PARM='QUOTE,FLAG(I,W),EXIT(INEXIT(' 'OSVS' ',RW))'

Common options which have been customized for the compiler will also

be picked up by the precompiler if you use INEXIT(RW). Hence you can

customize all the options you will need regularly and avoid exceeding

the maximum size for the PARM.

3. By placing them in the program source, using CBL / PROCESS. (see page 10).

The precompiler accepts the same abbreviated keywords as the compiler. Thus

F may be coded for FLAG, LC for LINECOUNT, and so on. Keywords specific to

the precompiler have no abbreviations.

 COBOL Report Writer Precompiler Installation and Operation for z/OS 28

2.3.3 Meanings of the Options

The following list explains each option. Alongside each keyword you will see the

phase or phases it applies to (precompiler only or shared). The supplied default

option value is underlined in each case. Note that the default setting of shared

options is always the same as the default for the compiler. You will need to refer

back to this section later when you read the sections describing customization

(see Part 3) and operation (see Part 4). In those parts you will be shown exactly

how and where to code the parameters.

 ┌─ ADV ─────────────────┐
 │ ►►───┬─ADV─┬─►◄ │ shared
 │ └NOADV┘ │
 └───────────────────────┘

ADV instructs the precompiler and compiler to reserve an extra byte

at the start of each report file record for the carriage control

character.

NOADV states that the first byte of each report file record, as

defined in the program, is set aside by the Programmer for this

purpose.

 APOST – see QUOTE

 ┌─ CMPR2 ───────────────┐
 │ ►►───┬─CMPR2─┬─►◄ │ shared (legacy)
 │ └NOCMPR2┘ │
 └───────────────────────┘

The option CMPR2 modifies the code generated by the precompiler

so that it conforms with the requirements of the compiler CMPR2

option. This option is a “legacy” option. IBM COBOL now always

assumes NOCMPR2.

 ┌─ COMPVAR────────────────────────────┐
 │ ►►─────COMPVAR(variable=value┬──►◄ │ precompiler only

 │ ▲ │ │
 │ └──────────,──┘ │
 └─────────────────────────────────────┘

COMPVAR is used to set up precompile-time variables for use in

conditional precompilation. variable may be any unique name,

following the normal rules for a COBOL data-name. Case (upper or

lower) is not significant. value may be any string of characters

which must be contained within quotes (or apostrophes), unless the

value is entirely alphanumeric, without any spaces, in which case

the quotes are optional. Case (upper or lower) is significant if the

value is within quotes, not otherwise. This option may be used any

number of times and the results are accumulated. CV is accepted

as an abbreviation for COMPVAR.

Here are examples of the COMPVAR option:

 2 – Planning and Preparation for Installation 29

COMPVAR(region=southwest)

CV(country1=’Belgium’,COUNTRY2=”S.Africa”,Country3=France)

┌─ CONDC───────────────────────────┐
│ ►►───┬─CONDC─┬─(character)┬─┬─►◄ │ precompiler only

 │ │ └─(S)────────┘ │ │
 │ └─NOCONDC──────────────┘ │
 └──────────────────────────────────┘

CONDC sets up a prefix to be used to mark the start of a conditional

precompilation construction. The character S indicates standard

syntax which uses a double chevron >> as the marker. S is the

default. Otherwise, character must be a special non-alphanumeric

character. If NOCONDC is specified, the precompiler will not

process conditional directives and will leave them intact for the

compiler to process.

For example, if S is specified, or if CONDC is defaulted, this syntax

could be used in the source:

>>IF country1=’Belgium’

 …

>>END-IF

If CONDC(?) were specified, the >> pair would be replaced in the

above example by a single ? character.

See the section on Conditional Precompilation.

 ┌─ COPY ────────────────┐
 │ ►►───┬─COPY─┬─►◄ │ precompiler only
 │ └NOCOPY┘ │
 └───────────────────────┘

COPY instructs the precompiler itself to process any COPY and

REPLACE statements in the source program. If it is specified, the

COPY statements and their expansions (unless SUPPRESS is specified

in the COPY statement) are then printed in the source listing and the

compiler's source input will contain no COPY statements. Similarly,

REPLACE statements are processed and the results after

replacement are printed in the listing. This option is required if any of

your COPY books contain any Report Writer statements, or if a

REPLACING statement affects any Report Writer statements.

NOCOPY prevents the processing of COPY and REPLACE

statements, leaving this task to the compiler, if necessary. NOCOPY

differs from NOLIB in that it affects the precompiler only. If NOCOPY

is specified, PRTEXIT(RW) should not be used.

 ┌─ CTRLEN ────────────────┐
 │ ►►─CTRLEN(┬integer┬─►◄ │ precompiler only
 │ └──80───┘ │
 └─────────────────────────┘

CTRLEN gives the size in bytes of the largest Data Division item that

will be used in the CONTROL(S) clause of a Report Description. This

 COBOL Report Writer Precompiler Installation and Operation for z/OS 30

option is not relevant unless NOXCAL is also specified (see below). If

in doubt, you may give a value of up to 256 for this option.

The precompiler allocates for each CONTROL item (other than

FINAL) a saved control location which holds the previous contents of

the control. This is used by Report Writer both to check for control

breaks and also to restore controls to their previous values during the

processing of CONTROL FOOTING report groups.

 ┌─ DBCS ────────────────┐
 │ ►►───┬─DBCS─┬─►◄ │ shared
 │ └NODBCS┘ │
 └───────────────────────┘

DBCS tells the precompiler and compiler that there may be Double

Byte Character Set literals in the source, so that the Shift Out and

Shift In characters will be recognized as such.

 ┌─ EXIT (as compiler option) ──────────────────┐
 │ ►►─┬─EXIT(─┬─INEXIT(─┬──────────┬RW) ────┬─►1 │
 │ │ │ └’options’,┘ │ │

 │ │ ├─NOINEXIT────────────────────┤ │

 │ │ └─────────────────────────────┘ │

 │ └─NOEXIT────────────────────────────────►2 │

 │ 1►───────┬─,LIBEXIT(─┬─────────┬module)─┬──►3 │

 │ │ └’string’,┘ │ │

 │ ├─,NOLIBEXIT───────────────────┤ │

 │ └──────────────────────────────┘ │

 │ 3►───────┬─,PRTEXIT(RW)┬──────────────)─┬──►◄ │

 │ ├─,NOPRTEXIT──┤ │ │

 │ └─────────────┘ │ │

 │ 2►──────────────────────────────────────┘ │

 └───┘

This is the option that enables the precompiler to run under the control of

the compiler. Abbreviations are: EX, INX, LIBX, PRTX.

The 'options' represent any string of precompiler-specific options, as

described here. Apostrophes must be doubled if the main PARM is

enclosed in apostrophes. Commas in the above syntax are optional.

LIBEXIT cannot be used to invoke the precompiler, and it is included here

for completeness. If you are using a third-party librarian product that

uses a LIBEXIT, you can put its name here and specify NOCOPY, in which

case the compiler will be given the library expansions, or you can put it in

the precompiler's own LIBEXIT slot (see next).

PRTEXIT(RW) is necessary to obtain a single compact source listing. It is

required if you specify the options LGSEQ or MGENER, or if you specify

FLAG with a second operand, or SEQUENCE, and you want the

precompiler listing to show the effect of these. (See 1.5 for an

explanation of the benefits of PRTEXIT(RW).)

 2 – Planning and Preparation for Installation 31

 ┌─ EXIT (as precompiler option) ──────────────────┐
 │ ►►─┬─EXIT(─┬─INEXIT(─┬──────────┬module1) ─┬─►1 │
 │ │ │ └’string1’,┘ │ │
 │ │ ├─NOINEXIT──────────────────────┤ │
 │ │ └───────────────────────────────┘ │
 │ └─NOEXIT──────────────────────────────────►2 │
 │ 1►───┬─,LIBEXIT(─┬──────────┬module2)─┬──────►3 │

 │ │ └’string2’,┘ │ │
 │ ├─,NOLIBEXIT─────────────────────┤ │
 │ └────────────────────────────────┘ │
 │ 3►───┬─,PRTEXIT(─┬──────────┬module3)─┬─)──┬─►◄ │
 │ │ └’string3’,┘ │ │ │
 │ ├─,NOPRTEXIT─────────────────────┤ │ │
 │ └────────────────────────────────┘ │ │
 │ 2►───┘ │
 └───┘

This option is similar in format to the compiler's EXIT option, except

that quotes may be used instead of apostrophes. It is provided for

those who already need the EXIT option for some other purpose

(another preprocessor or a librarian utility) other than for Report

Writer. It can be used both by INEXIT(RW) and by the stand-alone

precompiler. The effects of INEXIT, LIBEXIT, and PRTEXIT are exactly

as described in the Application Programming Guide. The LIBEXIT is

not used if NOCOPY is in effect. If you want LIBEXIT to take effect

with NOCOPY, you should place it within the compiler's EXIT option.

This entire EXIT option can in turn be coded as one of the options of

the 'string' passed to the precompiler via the compiler's

INEXIT('string',RW) option, thus nesting the EXIT options. To avoid a

long and complex PARM 'string' in your JCL, this, like all the

precompiler options, may be customized or placed in the SYSOPTF

file. Unlike the compiler's EXIT option, the precompiler also allows

the three parameter 'strings' to be specified on customization, with a

maximum of 64 characters each.

 ┌─ FLAG ──────────────────────┐
 │ ►►──┬─FLAG(x┬────┬)─┬─►◄ │ shared
 │ │ └─,y─┘ │ │
 │ └─NOFLAG────────┘ │
 └─────────────────────────────┘

FLAG controls the printing of precompiler and compiler messages.

See your Application Programming Guide for full details. The default

value is FLAG(I).

 COBOL Report Writer Precompiler Installation and Operation for z/OS 32

If the second operand is present, PRTEXIT(RW) is required if

precompiler messages are also to be embedded. PRTEXIT(RW)

collects together the messages from both the precompiler and

compiler, merges them in sequence and displays them embedded

in the source, according to the second operand, and at the end of

the listing, according to the first operand. The second severity level

must be higher than or equal to the first severity level. For example,

FLAG(I,E) will print all messages at the end and only level E, S, or U

messages embedded.

 ┌─ FLAGSTD ────────────────────────┐
 │ ►►──┬─FLAG(x┬────┬┬────┬)─┬─►◄ │ shared
 │ │ └─yy─┘└─,o─┘ │ │
 │ └─NOFLAGSTD───────────┘ │
 └──────────────────────────────────┘

FLAGSTD provides informational messages about the conformance

of your program to the Standard. See your Application

Programming Guide for full details. The precompiler provides

additional FIPS messages- relating to the Report Writer syntax. All

IBM and SPC extensions to the ANS-85 syntax are flagged as

"NONCONFORMING NONSTANDARD" and whatever level is implied

by the first character, all clauses and statements specific to Report

Writer are flagged as "NONCONFORMING STANDARD". If O is

specified, all obsolete language features held over from either the

ANS-68 or ANS-74 standard are flagged as "OBSOLETE". The FLAGSTD

option also has its standard effect on the compiler.

Note: If you require Report Writer FIPS messages but you do not want

the compiler messages, you may place the FLAGSTD option in the

'parameter string' of the INEXIT instead of in the main PARM. For

example, to obtain just details of extensions to Report Writer, code:

 PARM='EXIT(INEXIT(' 'FLAGSTD(H)' ',RW))'

 ┌─ FMODE ─────────────────┐
 │ ►►─FMODE(mode)──────►◄ │ precompiler only
 └─────────────────────────┘

This option can be used to redirect all the output from the reports in

a program through a specified file handler, in order to give it special

treatment or to direct it to a special output medium. If FMODE is

coded, every report file in the program that does not already have

a MODE clause in its SELECT statement is treated as though MODE IS

mode had been coded. Mode may be any alphanumeric string of

up to four characters.

 ┌─ LANGUAGE ─────────────────┐
 │ ►►─LANGUAGE(┬─UE─┬)─►◄ │ shared
 │ └─EN─┘ │
 └────────────────────────────┘

This option chooses whether the English text printed by the

precompiler should be only in upper case (EN) or whether lower-

 2 – Planning and Preparation for Installation 33

case is acceptable (UE). If any other value is used by the compiler,

the precompiler assumes EN.
 ┌─ LGSEQ ───────────────┐
 │ ►►───┬─LGSEQ─┬─►◄ │ precompiler only
 │ └NOLGSEQ┘ │
 └───────────────────────┘

LGSEQ causes PRTEXIT(RW) to place sequence number of the

corresponding intermediate source line in columns 1 through 6 of

each original source line in the source listing. (The actual contents

of columns 1 through 6 in the input source are not shown but are of

course left unchanged in the input source.) Thus you obtain all of

the compiler's source line numbers (except for precompiler-

generated lines) and this option saves you the need to print and

save the intermediate listing in the cases such as the following:

a. If a compiler-generated run time message is issued from your

program, you can locate the source line that caused it.

b. If you wish to refer to line numbers during on-line debug, you

can find them in the original source listing.

┌─ LICENSE ───────────────┐
 │ ►►─LICENSE(code)────►◄ │ precompiler only
 └─────────────────────────┘

LICENSE can only be used in the Customizing the Precompiler step

when it is required. code is a 6-digit number, unique to each copy

of the Precompiler, provided by your supplier.

 ┌─ LINECOUNT ────────────────┐
 │ ►►─LINECOUNT(┬integer┬─►◄ │ shared
 │ └──60───┘ │
 └────────────────────────────┘

LINECOUNT gives the maximum number of lines per page for all the

precompiler's and compiler's listings. Integer must be at least 4.

 ┌─ MGENER ────────────────┐
 │ ►►───┬─MGENER─┬─►◄ │ precompiler only
 │ └NOMGENER┘ │
 └─────────────────────────┘

MGENER causes generated source lines to be printed embedded in

the original source. Source lines that have not changed are listed

once only. Additional source lines generated by the precompiler

are indicated by the following characters in the identification

columns:

 "RWnnnn+" (nnnn = version/release number)

Each altered line is followed by the new line containing:

 "RWnnnn="

in these columns. NOMGENER suppresses this function.

 COBOL Report Writer Precompiler Installation and Operation for z/OS 34

 ┌─ MONIT ─────────────────────┐
 │ ►►─┬MONIT(integer)┬─►◄ │ precompiler only
 │ └NOMONIT───────┘ │
 └─────────────────────────────┘

The MONIT option is reserved for program maintenance by, or under

the direction, of your support center.

 ┌─ OPTFILE ────────────────┐
 │ ►►───┬─OPTFILE─┬─►◄ │ shared
 │ └NOOPTFILE┘ │

└──────────────────────────┘

The OPTFILE option tells the compiler and the precompiler to open

the SYSOPTF dataset for additional options. These additional options

will be processed as though they had been coded in the place

where the OPTFILE option is coded.

The precompiler will find and set up any options which are shared

with the compiler, such as QUOTE or ADV, and will ignore any

compiler-only options. Precompiler-only options may be indicated

by a double asterisk in columns 1 and 2. (The compiler will treat

them as comments.)

For example, if the SYSOPTF dataset contains the following:

*these are the settings

NODYNAM, LINECOUNT(56), TRUNC(OPT)

**FMODE(MODL)

then the precompiler will skip the first comment line and process the

LINECOUNT option and the FMODE option. The compiler will process

the NODYNAM, LINECOUNT and TRUNC options and treat the rest as

comments.

 ┌─ OSVS ────────────────┐
 │ ►►───┬─OSVS─┬─►◄ │ precompiler only

 │ └NOOSVS┘ │
 └───────────────────────┘

OSVS specifies that the OS/VS COBOL variants of the Report Writer

semantics are to be used wherever they differ from the standard

used in the precompiler. It should be specified for the migration of

OS/VS Report Writer programs. The effects of specifying OSVS are:

a. SOURCE SUM correlation will assumed to be in effect for any

SUM clauses, causing them to be interpreted according to the

ANS-68 rules, rather than ANS-85. It may be overridden in a

Report Description entry in the source program by means of the

ALLOW NO SOURCE SUM CORR clause. Further information will

be found in the Programmer's Manual under ALLOW clause.

 2 – Planning and Preparation for Installation 35

b. Any subtotalling is performed after the printing of any PAGE

FOOTING and/or PAGE HEADING groups and after the

execution of any associated USE BEFORE REPORTING

Declarative section.

c. An entry with a PICTURE clause but no data-name or COLUMN

clause is not printed.

d. The positioning of relative REPORT HEADING, PAGE HEADING,

PAGE FOOTING, and REPORT FOOTING groups is one line lower

than when the option is not specified.

NOOSVS produces the opposite result for each of these items. In

particular, the ANS-85 rules for the SUM clause will apply, with no

checking for correlation of SOURCE and SUM entries unless ALLOW

SOURCE SUM CORR is coded in the source program.

For further details, refer to the Programmer's Manual.

 ┌─ PPSNS ────────────────────────┐
 │ ►►─PPSNS(┬integer┬┬────┬)──►◄ │ precompiler only
 │ └──132──┘└─/F─┘ │
 └────────────────────────────────┘

The PPSNS option gives the default value of LINE LIMIT to be

assumed for any RD entry that has no LINE LIMIT clause. In other

words, it specifies the highest value a report COLUMN will be

allowed to attain. For details of the LINE LIMIT clause, refer to the

Programmer's Manual.

If the optional /F is coded, the value is taken as the default value of

the RECORD CONTAINS (plus 1 if NOADV is in effect). This has the

additional effect of forcing the logical record length of the given

value (as opposed to setting a maximum value). Use this option if it

is essential for the print files to have a logical record length of a

certain value even when some reports never use that many

columns' width. For example, to force a record length of 133, code

PPSNS(132/F).

 ┌─ QUOTE/APOST ──────────┐
 │ ►►───┬─QUOTE─┬─►◄ │ shared
 │ └─APOST─┘ │
 └────────────────────────┘

This option tells the precompiler which delimiter it should use for generated non-

numeric literals and has its usual effect on the compiler. The precompiler will

accept either delimiter in the input source, regardless of this option.

 ┌─ RTNEST ────────────────┐
 │ ►►───┬─RTNEST─┬─►◄ │ precompiler only
 │ └NORTNEST┘ │
 └─────────────────────────┘

The RTNEST option causes the precompiler to copy any COBOL run time routines

into the intermediate source as nested programs, rather than requiring them to

 COBOL Report Writer Precompiler Installation and Operation for z/OS 36

be linked in or loaded at run time. This option enables you to generate self-

contained "pure" sources that do not have "hidden calls" to run time routines

that might be overlooked, in the occasional instances when a run time routine is

needed. It also has the advantage that calls to the precompiler's run time

routines are not affected by your choice of DYNAM/NODYNAM.

Of course, Assembler routines cannot be included as nested programs and are

unaffected by this option. However, as indicated earlier (see 2.2.1), use of these

can be avoided in all but some exceptional cases.

 ┌─ RW ──────────────────┐
 │ ►►───┬─RW─┬─►◄ │ precompiler only
 │ └NORW┘ │
 └───────────────────────┘

This option gives the default action if the source contains no **CONTROL RW or

NORW precompiler-directing statement (see 1.8.1). These options enable you to

use the same JCL or command for all compilations.

If RW is specified, every source program will be assumed to contain Report

Writer code unless an **CONTROL NORW statement is present at the start of the

program. This statement thus saves the small unnecessary overhead of running

the precompiler in such cases.

If NORW is specified, every source program will be assumed to contain no

Report Writer code unless an *CONTROL RW statement is present at the start of

the program.

 ┌─ SEQUENCE ────────────────┐
 │ ►►───┬─SEQUENCE─┬─►◄ │ shared
 │ └NOSEQUENCE┘ │
 └───────────────────────────┘

SEQUENCE indicates that the sequence columns (1 through 6) in the original

source should be checked for correct ascending sequencing. If sequence

errors are found, two asterisks (**) are printed against the offending line and a

single warning message (RW-882) is printed at the end. The compiler's messages

resulting from this option are ignored by PRTEXIT(RW) because the sequence

numbers in the intermediate source are never in strict ascending sequence. This

option should therefore not be used without PRTEXIT(RW).

NOSEQUENCE indicates that sequence checking is to be omitted.

┌─ SITE ────────────────┐
 │ ►►─SITE value ────►◄ │ precompiler only
 └───────────────────────┘

SITE can only be used in the Customizing the Precompiler step. value

is any string of characters which must be either between

parentheses or between quote (or apostrophes). SITE is optional but

strongly recommended. The value is printed at the head of each

page of the source listing. If SITE is not specified, a generic title is

printed instead.

 2 – Planning and Preparation for Installation 37

 ┌─ SOURCE ─────────────────┐
 │ ►►───┬─SOURCE─┬─►◄ │ shared
 │ └NOSOURCE┘ │
 └──────────────────────────┘

SOURCE causes the original source program to be listed.

NOSOURCE suppresses the listing of the source. NOSOURCE is invalid if you

specify LGSEQ, MGENER, SEQUENCE or FLAG with two operands.

 ┌─ SPACE ──────────────────┐
 │ ►►──SPACE(─┬─1─┬─►◄ │ shared
 │ ├─2─┤ │
 │ └─3─┘ │
 └──────────────────────────┘

This option specifies the spacing between successive lines of the SOURCE listings.

 ┌─ TERM ──────────────────┐
 │ ►►───┬─TERM─┬─►◄ │ shared
 │ └NOTERM┘ │
 └─────────────────────────┘

TERM causes the precompiler to display all messages on the screen (or on

SYSTERM in a batch environment), as well as having the usual similar effect on

the compiler.

 ┌─ XCAL ──────────────────┐
 │ ►►───┬─XCAL─┬─►◄ │ precompiler only
 │ └NOXCAL┘ │
 └─────────────────────────┘

XCAL enables the precompiler to invoke external run time routines in certain

cases (see 2.2.1) where doing so will produce a more efficient, or completely

compatible, or more satisfactory program. If XCAL is in effect, there are no

restrictions on the size and format of controls and any run time error messages

are displayed in full.

NOXCAL instructs the precompiler to avoid, if possible, the generation of CALLs

to certain run time routines. The effects of specifying NOXCAL are as follows:

 If a CONTROL clause is present in an RD (other than REPORT or FINAL),

control breaks will be processed through generated in-line code, rather

than by using the LENGTH register and subroutines CXRCTCP, CXRCTUS,

and CXRCTRS. If this option is used, CONTROL operands must be,

implicitly or explicitly, USAGE DISPLAY and there is an upper limit of 256 to

their size (see CTRLEN option above). See the Programmer's Manual for

details.

 If an error occurs during the running of the program, a short message is

printed, showing only the identity of the message but no explanatory

text, page, or line number information.

 COBOL Report Writer Precompiler Installation and Operation for z/OS 38

Use of NOXCAL prevents the generation of calls to all external subroutines from

an unchanged OS/VS COBOL program.

2.3.4 Restrictions to Other Compiler Options

The NOCOMPILE(x) option is unaffected by errors found by the precompiler.

The DYNAM/NODYNAM option has an important indirect effect on the

precompiler since calls to the run time routines are generated as a CALL "literal".

See 2.2.2 for more information.

The NUMBER option is not allowed with PRTEXIT(RW).

The WORD option could adversely affect the precompiler's code generation if

you use it to restrict the use of certain reserved words. The precompiler does not

generate any reserved word (such as ALTER) that you would be likely to restrict.

A list of the reserved words that may be used by the precompiler in its COBOL

code generation are listed in Appendix F.

 3 – Installation and Customization for z/OS 39

3

Installation and

Customization for

z/OS

This part contains information to enable you to install the Report

Writer product under z/OS from the supply media, customize the

precompiler, prepare the run time library, and verify that the

installation and customization steps have been successful.

Before installing, you should check with the Information Network, or

the supplier (see inside front cover), to ensure that you have any

amendments due for this release.

 3 – Installation and Customization for z/OS 41

3.1 Copying the Supply Media
COBOL Report Writer is delivered by electronic mail as a set of JCL files which

are run on your z/OS mainframe system as six “jobs”. Contents are all 80-column

lines of text, containing only the characters you find on your keyboard; so you

should not perform any conversion when copying the media from your PC to

the mainframe.

In addition, the media contain: (a) a TNL (Technical Newsletter) describing the

new Release (b) Installation Instructions and (c) Settings and Preferences. This

last item, Settings and Preferences, is also JCL that you should upload to the

mainframe. Unlike the six jobs, it is not executable: instead, it contains a series of

SET statements. It contains essential items such as your License code, plus your

local settings, such as your COBOL compiler and Language Environment, your

preferred storage device and other items, all optional. It is automatically

included into each of the six jobs, so that you do not need to repeat the edits.

The only edit you need to make to all seven items of JCL is your High-Level

Qualifier (“hlq”), with a variable name of RWHLQ, unless you keep the default

setting which is RW. The second part of the library names will be the

version/release number: VvRrM00. So “Janet” installing hypothetical release 2.3

will probably finish with libraries called, for example, JANET.V2R3M00.SCXRPREC

(the Precompiler library in this case). You can override this second part also

from VvRrM00 to some other name by changing the variable name RWVSN.

You can even decide to have a prefix in one part instead of two, by changing

the SET name of the variable RWPFX. By default, RWPFX is set to RWHLQ.RWVSN.

You can perform any initial edits either on your PC or later on the mainframe.

Many settings can be changed again after installation, if your preferences or

local circumstances change. Installation very rarely needs to be repeated.

Note that historic delivery media, dating from 1987, were tape cartridge. If you

receive such obsolete media, you should put it “on the shelf” and contact the

vendor for an electronic copy.

Here is a summary of the files and job steps transmitted. In the list below, v is the

version, r is the release no. (I is the capital letter “I”).

RWvr00I1 builds the Precompiler in a “Transition” library (prefixed by letter “T”).

RWvr00I2 builds the run-time libraries and some JCL routines.

RWvr00I3 builds the zones and log data sets required by SMP/E.

RWvr00I4 allocates the Target libraries (prefixed by letter “S”) and does SMP/E

“RECEIVE” and “APPLY” processing.

RWvr00I5 does the Customize step, then compiles and runs the IVP (Installation

Verification Program). (It produces this year’s calendar.)

RWvr00I6 allocates the Distribution libraries (prefixed by letter “A”) does SMP/E

ACCEPT processing.

To install the product, take the following steps:

 COBOL Report Writer Precompiler Installation and Operation for z/OS 42

3.1.1 Step 1

Choose a high-level qualifier (“hlq”) for the Report Writer libraries and other

data.

3.1.2 Step 2

Edit all seven JCL files changing SET RWHLQ=RW to SET RWHLQ=hlq. The SET

statement appears only once near the start of each file. You may be able to

do a “global edit” to make all the changes in a single action. You can instead

perform the edits described in these steps on the mainframe.

3.1.3 Step 3

Edit the Settings and Preferences file as descrbed in the Installation Instructions.

As a minimum, you need to change these settings: RWHLQ, LICENCE, SITE,

VOLUME. It is likely too that your current COBOL compiler and LE library will have

different names from those tentatively assumed in the text.

3.1.4 Step 4

On the mainframe, allocate a temporary (“transition”) JCL library, TCXRJCL, as

descrbed in the Installation Instructions.

3.1.5 Step 5

Load each of the supplied seven text files into this library under the names given

in your Installation Instructions.

3.1.6 Step 6

Place a JOB line at the front of each job if necessary and run each of the six jobs

RWvr00I1-6 in order. Check each job for a return code of zero (00) before going

on to the next.

3.1.7 Step 7

Run the six jobs CRWvrI01-06 in turn, checking that you have a zero return-code

before submitting the next. The Precompiler is now installed, customized and

verified. It is ready for use.

3.1.8 Re-running

You can re-run the six jobs at any future time. However, to delete the SMP/E

zones and log files, you must first run the JCL RWDELZON. because Job 3 cannot

conditionally delete them. You can also run jobs individually. Be aware

however that the jobs will delete and re-allocate the libraries they are due to

populate, so that you will lose any extra items you may have placed in them.

Job 5 may usefully be re-run whenever you change the default options.

 3 – Installation and Customization for z/OS 43

Updates and manuals:

Future Apar fixes and/or PTF updates may be issued against the release you

have installed and should be applied immediately.

The "Programmer's Manual" (SC26-4301) is required for using the language

features.

This manual and the Programmer’s Manual may be downloaded from the

website www.spc-systems.com by clicking on DOWNLOAD.

3.2 Customizing the Precompiler

Customizing the Precompiler permanetly changes its default settings. These

may be temporaily overridden by the PARM setting in the JCL or by a

CBL/PROCESS line at the front of a source program (which takes top priority).

Additionally if the option setting is shared with the compiler, such as ADV or

QUOTE (see 2.3.3) and if the INEXIT is used then the COBOL compiler’s own

settings take preference, for purposes of consistency.

The Customize step is done automatically in Job 5 of the Installation process.

Should you wish to change your default settings at a later time you may achieve

this in one of two ways:

1. Edit the Settings and Preferences, changing the precompiler options (RWOPT1

etc.) and re-run Job 5.

2. Run the Customize JCL provided in the JCL library. This jcl is provided in the

JCL library:

 hlq.vsn.SCXRJCL(CXRCUST)

An asterisk in column 1 indicates a comment. You can code one or several

options on each line, separated by a space of comma. Place your option

settings under the “SYSIN DD *” line. Here is an example:

//SYSIN DD DATA

*my option settings:

LICENSE(123456)

SITE(LONDON INSTITUTE OF VENTRILOQUISM)

NOOSVS

PPSNS(132),QUOTE

/*

You may wish to alter your options by repeating this step at any time, so it is

advisable to keep a copy of the JCL with the options that you last used.

Options that you do not specify are set to their supplied default values

(underlined in 2.3.3, not the values you last set them to. If you wish to reset all

options to their supplied defaults, you can code only thr LICENSE and SITE

options.

 COBOL Report Writer Precompiler Installation and Operation for z/OS 44

3.3 Run Time Sources

COBOL source libraries are provided in two versions, which are identical except

that in one all quote symbols are changed to apostrophes. These libraries

consist of:

 a source copy of each COBOL and Assembler run-time routine: this

enables you to (a) use the RTNEST option (where COBOL run time

routines are incorporated in source form) and (b) re-compile the

run time load module library at any future time with different

compiler options,

 COPY members required by user-written run time extensions,

 the Installation Verification Program.

3.4 Installation Verification

This vital step is done automatically within Job 5 of the Installation process. You

can also do this independently. Your run time source library contains a sample

Report Writer source program (CXRIVP01) which should be compiled and run to

check that your installation and customization has been successful. Use the

sample JCL in CXRTEST (alias RWTEST) to precompile, compile, link edit and run it.

You should obtain a correct calendar for that year. The contents are self-

explanatory.

3.5 Compiling the COBOL Run Time Routines

This step is done automatically in Job 2 of the Installation process. You can re-

run this step at any time. Alternatively, you can run the supplied JCL in

CXRCOMPR (alias RWCOMPR). Refer to 2.2.3 for an explanation of when you

may need to re-perform this step.

3.6 Sample File Handler

Your run time library will contain sample COBOL file handlers, including

CRFHMODL and COPY members for the standard linkage areas (RWFCACOM,

RWRCACOM, and RWPLNCOM). You may use one of these as a basis for

producing your own Report Writer file handlers for directing Report Writer output

to a non-standard medium in a manner that you decide. For further

information, consult the Programmer's Manual.

 5 – Using the Precompiler on z/OS 45

4

Using the

Precompiler on

z/OS

This part describes in detail how to load and run the precompiler

on z/OS after it has been installed from the supply media. It also

describes which data sets are required and explains how options

may be selected. Finally, it describes the procedures necessary to

link-edit and run your resultant program.

 5 – Using the Precompiler on z/OS 47

4.1 Using INEXIT(RW),PRTEXIT(RW)

INEXIT(RW) is the recommended way to precompile and compile any source

program. You use your existing JCL for a COBOL compilation, adding an

additional EXIT option to the compiler's PARM string as follows:

 PARM='...EXIT(INEXIT(' 'parameters' ',RW),PRTEXIT(RW))'

which may be abbreviated to

 PARM='...EX(INX(' 'parameters' ',RW),PRTX(RW))'

The doubled apostrophes are required by the rules of JCL syntax. In the

'parameters' you code any options that apply to the precompiler only. The

compiler does not recognize options placed inside the EXIT construction, so any

options which are also used by the compiler must be coded outside the EXIT in

the compiler's main PARM string. For example, if you want the options QUOTE

and NOOSVS, you must code the following:

 PARM='QUOTE,EX(INX(' 'NOOSVS' ',RW),PRTX(RW))'

If there are no precompiler options, because you are happy with the supplied or

customized defaults, you code simply:

 PARM='...EX(INX(RW),PRTX(RW))'

If you do not require the PRTEXIT, code the following:

 PARM='...EX(INX(RW))'

If the PARM string becomes too long, you can define the EXIT sub-options in the

COBOL compiler's customization macro, or in the SYSOPTF file. (You can create

a second copy of IGYCDOPT with these EXIT sub-options set, placing it in a

different library, and select it by placing this library at the front in your STEPLIB DD

statement.)

The COBOL compilers do not allow the 'parameters' to the INEXIT to be

customized, but you can specify any of the precompiler options to the

precompiler customization procedure.

4.1.1 STEPLIB

Unless it is held permanently in memory, the precompiler load module library

RW.VvRrM0.SCXRPREC and must be defined in a STEPLIB (or JOBLIB) entry. Unless

it is held permanently in memory, the COBOL run time library used by the

precompiler must also be included in the STEPLIB. If LE/370 is to be used at run

time, place IGY.VvRrMm.SCEERUN (or the name in current use) in the STEPLIB.

4.1.2 Work File RWWORK

The additional data set RWWORK must be assigned in your compilation JCL as

working space for the precompiler. This may be assigned in a similar way to the

compiler work files SYSUT1 etc.

 COBOL Report Writer Precompiler Installation and Operation for z/OS 48

4.1.3 Main Listing SYSLIST

This additional listing data set must be assigned in your compilation JCL if you

specify INEXIT(RW) without PRTEXIT(RW). This file contains the main source listing.

4.2 Using the Stand-alone Precompiler

An alternative to using INEXIT(RW) is to use the stand-alone precompiler

SPCRWCOB. This reads the source from SYSIN and writes the result to SYSINS.

The output may be retained or fed direct to the compiler. This method has

certain disadvantages over INEXIT(RW) because it requires two steps, which

implies two listings, two sets of options (that must agree if they are shared

options), and a longer processing time. Sample JCL to do a stand-alone

precompilation followed by a compilation is given here.

//* PRECOMPILATION STEP:

//PRECOMP EXEC PGM=SPCRWCOB,REGION=...,PARM='options'

//STEPLIB DD DSN=RW.VvRrM0.SCXRPREC,DISP=SHR

//* if LE run time is not implicitly loaded:

// DD DSN=CEE.VvRrMm.SCEERUN,DISP=SHR

//SYSIN DD input source

//RWWORK DD UNIT=SYSDA,SPACE=...

//SYSPRINT DD SYSOUT=...

//SYSINS DD DSN=&INTERM,SPACE=...,DISP=(,PASS)

//*

//* COMPILATION STEP:

//COMP EXEC PGM=IGYCRCTL,REGION=...,PARM='options'

//SYSIN DD DSN=&INTERM,DISP=(OLD,DELETE)

//* etc....

You may need to include the following additional DD entries for the compiler

step in both the stand-alone precompiler and the compiler with INEXIT:

SYSLIB if option COPY is specified

 (or any IN/OF library-name)

SYSTERM if option TERM is specified

SYSOPTF if option OPTFILE is specified

PHSLIBQ/A if option RTNEST is specified

 5 – Using the Precompiler on z/OS 49

4.3 Linking & Running a Compiled Program

4.3.1 Run Time Library

Follow your compilation step with a link-edit step and the program is ready to

use. In general, the precompiler will have generated some external references

to the Report Writer run time library. An explanation of the functions of all the

subroutines in this library are given in Appendix A. If your program requires run

time routines (and they are not all included in source form using RTNEST) and the

compiler option NODYNAM was in effect, you should include the run time library

RW.VvRrM0.SCXRRUN in your SYSLIB DD entry for the Linkage-Editor step.

If the compiler option DYNAM was in effect (and again NORTNEST was in effect),

this same run time library should instead be included in the STEPLIB at program

execution time.

4.3.2 User-Developed Routines

As well as the supplied routines, the run time library may contain routines written

by you or other local personnel. These are fully described in the Programmer’s

Manual and consist of:

 Report Writer FUNCTION routines

 Independent Report File Handlers

If NORTNEST and NODYNAM are in effect, and user-written FUNCTION routines

are required, the library containing them should also be included in the link edit

step. User-written file handlers are always called dynamically.

 Appendices 51

Appendices

 Appendix A – Programs and Library Routines 53

Appendix A

List and Description of Programs and Library Routines

The following is a list of the precompiler and run time modules. Some modules

have alias names by which they are referred to wherever they are invoked.

(i) Precompiler

Module Name Purpose

(Alias)

CXRRWINX INEXIT/PRTEXIT control routine

(RW) This module is executed by the compiler when you

specify INEXIT(RW). If you include PRTEXIT(RW), the

same module is used for the Print Exit.

CXRRWEXT Main processing module

(SPCRWEXT) This module is the main engine, performing all the

Precompiler and Print Exit functions.

CXRRWCOB Stand-alone Precompiler

(SPCRWCOB) This program may be used as instead of the INEXIT

to precompile a Report Writer source separately.

CXRWLOWP I/O Routines

(SPCHLOWP) This module contains common routines to read or

write sources and libraries, and handle DASD. This

module resides in a 24-bit addressable region.

CXRWCUST Customizer for Options

(SPCRWCUS) This separate program is called by the CXRCUST

customize jcl routine.

CXRWOPTS Options Settings

(SPCHOPTS) This module is generated by the Customizer. It

contains default values for all the precompiler

options. It can be re-generated at ay time by

repeating the customize step.

(ii) Run Time Library

Run time routines are invoked not as a constant overhead, but only

occasionally when required by the application. The circumstances of the use of

each is given against each entry following.

Module Name Purpose

(a) COBOL Routines and Areas

CXRFHCON File Handler Steering Routine

 This routine is invoked if the Report Writer program

uses an Independent Report File Handler. It directs

control to and from the file handler on each call,

performing housekeeping and checking functions.

It also handles the PAGE BUFFER and the

DUPLICATED features, if called for.

 COBOL Report Writer Precompiler Installation and Operation for z/OS 54

CXRSTYLE STYLE processing

 This routine is used whenever a STYLE clause is

found in a Report Writer entry. It looks for the

escape sequences inserted into the print data by

the Report Writer code to implement underline,

boldface and any other special effects required.

CXRCHMV Variable-position field processing

CXRCHNF These routines handle the positioning of fields in

the report line whose starting position depends on

the value of COLUMN-COUNTER.

CXRERNF Log Run time Error Condition

 This routine displays an error number and message

to indicate that a standard error condition has

arisen during the execution of the Report Writer

program. It is not used if NOXCAL is specified, in

which case the program DISPLAYs a shorter

message directly. Standard run time errors are

listed below in Appendix .

CXRPBF01-nn Page Buffer Handling

 These routines handle the buffering of up to a

whole page of data when the clause WITH PAGE

BUFFER is used. Any number of these may be

present, depending on how many report files open

simultaneously require a page buffer. Six are

normally provided (01-06), but additional routines

can be produced simply by increasing the value

of nn in the program-id and re-compiling.

CXRRELA REPEATED processing

 This routine handles the buffering and side-by-side

alignment of groups defined with the REPEATED

clause.

CXRVARF Variable-length field processing

 This routine is used to process fields defined with "<"

(variable-length) PICTURE symbols.

CXRLWRP WRAP processing

 This routine handles the WRAP clause which is used

to produce "wrap-around".

CXRCTMV Copy CONTROL item

 This routine is used to copy the contents of a

control data item to and from its saved control

area. It is used only as a nested program. If

NORTNEST is specified, in-line code is substituted.

 Appendix A – Programs and Library Routines 55

FUNCTION Routines

These are invoked when the corresponding FUNCTION is used. The second

character of the alias name represents the number of parameters given in the

FUNCTION clause. For instance, FUNCTION DATE (i.e. print today's date) calls

R0DATE, whereas FUNCTION DATE (WS-IP-DATE) (i.e. print the given date) calls

R1DATE.

Module Name Mnemonic Purpose

(Alias)

CXR0CTIM CTIME Print 12-hour clock time

(R0CTIME)

CXR1DATE,CXR0DATE DATE Print current or specific date

(R1DATE,R0DATE) (day-month-year)

CXR1DAY,CXR0DAY DAY Print current or supplied day-of-week

(R1DAY,R0DAY)

CXR1DYSN DAYSIN Print date, converting from days

(R1DAYSIN) elapsed (day-month-year)

CXR1MDAT,CXR0MDAT MDATE Print current or specific date

(R1MDATE,R0MDATE) (month-day-year)

CXR1MDYS MDAYS Print date, converting from days

(R1MDAYS) elapsed (month-day-year)

CXR1MNTH,CXR0MNTH MONTH Print month name

(R1MONTH,R0MONTH)

CXR2MOVE MOVE Capture contents of internal register

(R2MOVE) or counter

CXR0RDAT RDATE Real date, updated at midnight

(R0RDATE)

CXR0RMDT RMDATE Real date (month-day-year)

(R0RMDATE)

CXR0RYDT RYDATE Real date (year-month-day)

(R0RYDATE)

CXR1STTE STATE Print US State name

(R0STATE)

CXR0STTF STATEF Print US State name, including

(R0STATEF) overseas territories

CXR0STIM STIME Print time, fixed at start

(R0STIME)

CXR0TIME TIME Print actual time

(R0TIME)

CXR1YDAT,CXR1YDAT YDATE Print current or specific date

(R1YDATE,R0YDATE) (year-month-day)

CXR1YRDY,CXR0YRDY YRDAY Print current date (YYDDD)

 COBOL Report Writer Precompiler Installation and Operation for z/OS 56

(R1YRDAY,R0YRDAY)

CXR1ZIP ZIP Print US ZIP code

(R1ZIP)

File Handlers and Dependent Routines

As well as a copy of the source of each of the routines above, the supplied

source library contains the following file handler source items.

Handler Name Function

(Alias)

CXRFMODL MODL File Handler. This file handler enables several

(CRFHMODL) independently compiled modules to write to the

same report file. It may be used as a basis for

other user-written file handlers. Full details are

given in the source. It is also described in Part 5 of

the Programmer's Manual.

CXRFNOPF NOPF File Handler. This file handler writes without

(CRFHNOPF) page feeds. Whenever it needs to advance a

page, it writes blank lines down to the bottom of

the page. Full details are given in the

Programmer's Manual.

CXRFCHAN CHAN File Handler. This file handler writes using

(CRFHCHAN) printer channels wherever possible. Details are

given in Appendix and in the Programmer's

Manual.

CXRFDUPL DUPL File Handler. This file handler emulates the

(CRFHDUPL) ability of OS/VS COBOL to write simultaneously to

two report files.

CXRSETDD This subroutine changes the DDname of the file

handler's report file to that specified in the report

program.

CXRCYFCA COPY library source of Report Writer File Control Area.

(RWFCACOM)

CXRCYRCA COPY library source of Report Writer Report

(RWRCACOM) Control Area.

CXRCYPLN COPY library source of Report Writer Print Line.

(RWPLNCOM)

 Appendix A – Programs and Library Routines 57

(b) Assembler Routines

CXRCTCP Handle controls for IBM COBOL

CXRCTUS These routines save, compare, and restore Control

CXRCTRS values when XCAL and NORTNEST are specified. If

NOXCAL is specified, in-line code is generated

instead.

CXRGBLS Process GLOBAL requests

 This routine executes the inter-program linkage for

GLOBAL items. It is invoked when a program issues

an INITIATE, GENERATE, or TERMINATE statement for

a GLOBAL report, or when a USE GLOBAL AFTER

REPORTING section is implicitly invoked, in a

different containing program.

CXRFPRNT Basic Print File Handler (MODE PRNT)

(CRFHPRNT) This file handler is used if a report requires the

STYLE, DUPLICATED, or PAGE BUFFER facility, and is

not already using a file handler.

CXRFHUSG Assist Routine #1 for USING Phrase

 This is called as a "front end" to a COBOL file

handler control routine CXRFHCON with additional

parameters defined by a USING phrase.

CXRFXXXP Assist Routine #2 for USING Phrase

(CRFHXXXP) This is called as a "front end" to a COBOL file

handler with additional parameters defined by a

USING phrase.

 Appendix B – Clauses that Require Run Time Routines 59

Appendix B

Clauses that Require Run Time Routines

1. Routines Written in Assembler

a. If the option XCAL is in effect, and a program contains a CONTROL

clause (a commonplace feature at all levels) the Assembler routines

CXRCTCP, CXRCTUS, CXRCTRS will be used for the testing of control

breaks and copying of your CONTROL identifiers.

b. If any report is defined as GLOBAL (so that it can be referred to from

a different program in a nested structure), the Assembler routine

CXRGBLS is invoked.

c. If there is a MODE clause with a USING phrase, the Assembler routines

CXRFHUSG and CRFHXXXP are used.

d. If the program uses one of the following features and there is no

MODE clause in the SELECT statement for the corresponding report

file, the Assembler report file handler CRFHPRNT will be used. The

features in question are:

 The DUPLICATED clause,

 The WITH PAGE BUFFER clause,

 The STYLE clause,

 The UPON option of the INITIATE statement,

 The use of CODE in more than one RD for the same file, where not

all CODE operands have the same length,

 The (erroneous) omission of the FD entry,

If none of these features is present, the program will use direct WRITEs

at run time (unless a MODE clause is coded for the file). For full details

of file handlers, see the Programmer's Manual.

Even if these features are present, use of the Assembler file handler

can be avoided by using a COBOL file handler: either one of those

which are supplied with the precompiler, such as CRFHMODL, or a

user-written file handler. This may be done in one of two ways:

i In the program source, add the clause MODE IS mode to the

appropriate SELECT statement(s), or

ii Assuming that there is no MODE clause already for the report

file(s) in question, use the option FMODE(mode).

Either of these ways forces use of the file handler CRFHmode.

A COBOL file handler may however have the following disadvantages

over the Assembler file handler:

i The supplied COBOL file handlers cannot handle more than one

file if they will be open simultaneously, since they contain only a

 COBOL Report Writer Precompiler Installation and Operation for z/OS 60

single FD (File Description) entry. However, a user-written file

handler may of course have any number of FD entries and

could, for example, allocate multiple files to different FDs in

order of OPENing. Additionally, in Batch mode (where no file

handler is used), a report may be written to any number of files

simultaneously by naming the same REPORT in several FDs.

ii COBOL file handlers use a pre-defined logical record length

and record format by virtue of the record description and/or FD

clauses and hence ignores the RECORD CONTAINS and

RECORDING MODE of the original report file. (The supplied

COBOL file handlers assume fixed-length records of 133 bytes.)

iii The supplied COBOL file handlers place the value of any CODE

after instead of before the carriage control character of each

record. A user-written file handler can of course place the

CODE wherever desired. (Note that CODE is now very little

used for its original purpose, namely to spool several print files to

the same "tape".)

2. Routines Written in COBOL

COBOL run time routines are used to implement certain special functions,

chiefly of the more "advanced" kind. The Report Writer features that cause

them to be introduced are as follows:

a. If XCAL is in effect, and no file handler is in use, a CALL to CXRERNF is

always generated at the TERMINATE statement. This routine handles

run time errors by printing a full explanatory message. If NOXCAL is in

effect an in-line DISPLAY is used instead, but this gives only the

reference number of the error.

b. If any MODE clause (other than PRNT) or any FUNCTION clause is

specified, the corresponding run time routine will be invoked. Any of

these routines may be user-written.

c. If RTNEST and NOXCAL are specified, and the program contains a

CONTROL(S) clause, the routine CXRCTMV is invoked to copy controls

to and from the "saved controls" area (see Appendix C - How

CONTROLS are Implemented).

d. The following "more advanced" features cause additional CALLs to

be generated: REPEATED clause, PICTURE symbol <, WRAP clause,

any field that has a variable horizontal position.

 Appendix C – How Controls are Implemented 61

Appendix C

How CONTROLS are Implemented

It is important to understand the way Report Writer's CONTROL(S) clause is

handled because this clause frequently appears in both old and new programs.

If the XCAL option is in effect, the precompiler uses Assembler library routines to

test for control breaks and save the controls.

The advantage of these routines are:

i They run rather more efficiently than the alternative methods described

under NOXCAL below.

ii They allocate space for the "saved controls" dynamically and fully

automatically, so there is no need to worry about the "maximum

control size" option (CTRLEN), and no unexpected run time errors will

arise because the saved controls are shorter than the actual controls.

iii As with the RTNEST option (see below), they allow CONTROL identifiers

to have any COBOL PICTURE, so no unexpected compilation errors will

arise from the CONTROL(S) clause of a correct legacy OS/VS COBOL

program.

These routines assume a native collating sequence. Hence, if an ALPHABET

clause is specified in the program, NOXCAL may be necessary to ensure that

the specified collating sequence is used.

If NOXCAL is in effect, the following different implementation is used:

The precompiler allocates a "saved control" area for each control level

(other than REPORT/FINAL). The size of each saved control location is

taken from the value established in the CTRLEN option (see 2.3.3). This

would ideally be exactly the same as the length of the corresponding

CONTROL data item. However, the precompiler does not scan the whole

DATA DIVISION for the PICTURE of the control item and must therefore

assume a reasonable maximum size. The default as supplied is 80 (one

screen's width) but up to 256 may be specified.

If RTNEST is also in effect, the precompiler will generate a CALL to the

nested program CXRCTMV to move the CONTROL data items to and from

the saved control areas.

If instead NORTNEST is also in effect (preventing the inclusion of run time

routines in source form), the code to move the CONTROL data items to

and from the saved control areas is generated in line. This has the

drawback that only data items with an implicit or explicit USAGE of DISPLAY

can be used as CONTROL identifiers (not COMPUTATIONAL or

COMPUTATIONAL-n). So it is possible for a valid OS/VS COBOL program to

result in a compilation error. This situation is easy for the programmer to

rectify (see Programmer's Manual: CONTROL Clause). This combination

(NOXCAL,NORTNEST) is necessary to ensure SAA compatibility of the

intermediate source.

 COBOL Report Writer Precompiler Installation and Operation for z/OS 62

If any program uses CONTROL items that have a length of more than the

value of CTRLEN, this error will be detected (by the subroutine CXRCTMV) if

RTNEST is in effect but will not be detected if NORTNEST is in effect. In either

case, the contents of CONTROL fields when printed in a CONTROL

FOOTING group may then appear truncated.

 Appendix D – Using the CHAN File Handler 63

Appendix D

Using the CHAN File Handler

This file handler makes best use of any available printer channels by calculating

how to get to each next line position in the fewest number of transfers. The

positions of the channels are fed into the file handler at run time as a set of

parameters in the QSAM data set SYSCHANS. The format of these parameters is:

 c(p q...)

where c is an integer from 1 to 12 and p, q,... are integers from 1 to 255. A new

line may begin anywhere. A comma may be used to separate the p, q... terms

if desired and spaces may appear anywhere between terms and separators

and at the start of the line, if desired. Comment lines may be written by placing

an asterisk (*) in column 1.

The term c represents the channel number and p, q,... are the line numbers that

can be reached by skipping to that channel. If several channels are defined,

these parameters follow one another in any order. If channel 1 is defined, the

only line number defined for it must be 1; if channel 1 is not defined, this is

assumed.

To reset all channels, an empty SYSCHANS data set can be set up.

If a 3800-type printer is in use, the Forms Control Block (FCB) still needs to be

configured. This file handler does not do that. Furthermore, the FCB channel

settings must agree with those specified.

 Appendix E – Printer Styles 65

Appendix E

Printer Styles

Printer styles are defined by means of the STYLE clause (see Programmer's

Manual). They enable special effects to be made use of, depending on the

type of printer in use. The following printer TYPEs are available:

 IBM-3800 or 3800 (the IBM laser printer)

 IBM-3211 or 3211 (line printer)

 IBM-1403 or 1403 (line printer)

If no TYPE is given, TYPE 3800 is assumed in default.

On 3800, all the styles apart from UNDERLINE are implemented using a Table

Reference Character (TRC). This is an additional character that appears

immediately after the carriage control character. This option is set by the file

handler PRNT. TRC 0 indicates NORMAL printing. TRCs 1 through 3 are arbitrarily

assigned the following names:

 1 - HIGHLIGHT

 2 - ALT-FONT

 3 - GRAPHIC

Thus TRC 1 is normally assigned to a HIGHLIGHT (i.e. BOLDFACE effect). It is up to

the user to attach appropriate meanings to ALT-FONT and GRAPHIC.

UNDERLINE and HIGHLIGHT may also be achieved on an older impact printer.

The following STYLEs are therefore available:

NORMAL

UNDERLINE This causes under-strike characters ("_") to be written in

the same positions as the characters to be underlined.

HIGHLIGHT This is implemented on 3800 as Table Reference

Character 1. It is implemented on impact printers by

printing the same line twice ("double hammering").

ALT-FONT This is implemented on 3800 as Table Reference

Character 2. It is not available on impact printers.

GRAPHIC This is implemented on 3800 as Table Reference

Character 3. It is not available on impact printers.

Internal formats

These styles are encoded by the precompiler as Escape sequences with the

following composition (Esc - Escape character):

start-UNDERLINE: Esc:UN>

start-HIGHLIGHT: Esc:HI>

start-ALT-FONT: Esc:AL>

start-GRAPHIC: Esc:GC>

end-style: Esc:<

 Appendix F – Generated Reserved Words 67

Appendix F

COBOL Reserved Words Generated by the Precompiler

The following COBOL reserved words may be used by the precompiler in its

COBOL code generation.

ADD

ALL

AND

CALL

COMP

COMPUTE

COPY *

DEPENDING

END-PROGRAM *

ERROR

EXIT

FROM

GIVING

GO

IF

IN

LOW-VALUES

MOVE

MULTIPLY

NOT

OBJECT-COMPUTER

OCCURS

OF

ON

OR

PERFORM

PICTURE

RIGHT

REDEFINES

REPLACING

ROUNDED

SECTION

SIZE

SOURCE-COMPUTER

SPACES

SUBTRACT

SUPPRESS

SYNC

THRU

TIMES

TO

UNSTRING

UNTIL

USING

VALUE

VARYING

WORKING-STORAGE

ZERO

In addition, the precompiler will reproduce any COBOL condition used in a

PRESENT/ABSENT WHEN clause, thereby reproducing any reserved words used

within it.

Words marked * are generated only if the RTNEST option is used. If RTNEST is

used, COBOL code from any of the run-time routines is incorporated directly into

the program, and these may contain keywords other than those listed above.

 Appendix H – Invocation by LINK/ATTACH 69

Appendix G

Run Time Messages

These conditions occur only at run time. Unless an Independent Report File

Handler is in use that directs them elsewhere, all messages are displayed on

SYSOUT. The line and page number are also displayed and, if a file handler is

in use, the name of the report.

Internal Report Writer Errors

These appear as the result of an error during the formation of a report line or

page, and are generated by the Report Writer code itself, rather than by a run

time routine.

REPORT WRITER ERROR n

is always printed, and in addition if the XCAL option is in effect, one of the

following explanatory messages will appear:

Value of n Message and Explanation

 1 COLUMN OVERLAP WITHIN LINE: PREVIOUS CHARACTER(S) OVERWRITTEN

This happens when two or more absolute elementary overlapping fields, or

groups of columns, with PRESENT WHEN clauses (or the equivalent) were both

present at the same time. The second field will overwrite all or part of the first.

The precompiler will have given an informational message RW-251-I at

precompilation time and will have assumed them to be mutually exclusive This

error usually has no serious effect on execution.

 2 LINE EXTENDED BEYOND LIMIT: TRUNCATED

This condition will occur when several conditional relative COLUMN entries

(COLUMN + n PRESENT WHEN ...) happen to be all present and their total size

exceeds the LINE LIMIT. The precompiler would have assumed that at least

some were mutually exclusive.

 3 LAST DETAIL IDENTIFIER OUT OF RANGE: USING PAGE LIMIT

This implies that the program contains the identifier form of the LAST DETAIL

clause but, when this was evaluated, the contents were found to be higher

than the LAST CONTROL FOOTING value.

 5 LINE OVERLAP: UNSCHEDULED PAGE ADVANCE MAY OCCUR

This happens when two or more absolute lines, or groups of lines, with PRESENT

WHEN clauses (or the equivalent) were both present. The precompiler would

have assumed that at least some where mutually exclusive. This will cause an

unscheduled page advance without the usual production of PAGE FOOTING

and PAGE HEADING groups, with lines that have the same LINE number

appearing on successive pages.

 6 PAGE OVERFLOW: PAGE WILL EXCEED LIMIT

This condition will occur when several conditional relative LINE entries (LINE + n

PRESENT WHEN ...) all happen to be present and their total vertical size

 COBOL Report Writer Precompiler Installation and Operation for z/OS 70

exceeds the maximum size normally allowed for the group. The precompiler

would have assumed that at least some were mutually exclusive.

 7 LINE LIMIT IDENTIFIER OUT OF RANGE: USING DEFAULT

This message implies that the identifier form of the LINE LIMIT clause has been

used and that its value was found to be higher than the maximum record

length of the report file.

 8 REPORT-NUMBER OUT OF RANGE: CHANGED TO 1

This means that the field REPORT-NUMBER was not in the range 1 to the

DUPLICATED value. Its value is changed to 1.

 10 SIZE ERROR ON STORING EXPRESSION

This message will appear when a SOURCE clause contains an expression that

causes a zero-divide error or an overflow when its value is computed before

storing in the report line. Report Writer will take the error action specified by

the OVERFLOW clause.

 11 SIZE ERROR ON SUMMING

This message will appear when a SUM clause or term was coded and an

overflow condition occurred on adding into the total field. Report Writer will

take the error action specified by the SUM OVERFLOW clause.

 14 REPORT WRITER HAS INITIATED REPORT BY DEFAULT

This message implies that the INITIATE statement has not been executed when

a GENERATE for the same report was executed.

 15 AT LEAST ONE TOTAL FIELD HAD NOT BEEN PRINTED ON TERMINATE

This message is issued when the total fields (other than those with RESET ON

FINAL) are checked on TERMINATE to ensure that their values are all zero,

indicating that they have all been "printed" in the report. This message will

appear in the following circumstances:

(a) When a SUM or COUNT clause or term was coded in a DETAIL group that

was not generated at the end when non-zero values had been accumulated.

(b) When a SUM or COUNT clause is subject to a PRESENT WHEN clause, or the

equivalent, and the condition prevented the last total from being displayed.

This fault may occur innocently when a SUM or COUNT is used for some

purpose other than to be "printed".

 Appendix H – Invocation by LINK/ATTACH 71

File Handler Errors

These messages may be issued by the File Handler Control routine:

REPORT WRITER ERROR n IN FILE HANDLER xxxx

or

REPORT WRITER PAGE BUFFER ERROR n

always appears, and

IN REPORT rrrrrr ON PAGE ppp LINE lll

appears if the report has been initiated.

The value of n may be any of the following:

 Value of n Message and Explanation

 8 REPORT-NUMBER OUT OF RANGE: NO DUPLICATION

The value of REPORT-NUMBER was found to be less than 1 or greater than the

DUPLICATED integer. This indicates a corruption, since REPORT-NUMBER is

checked independently by the Report Writer code.

 11 FILE ALREADY OPEN

An OPEN is being performed but the state of the current file is already "open".

The OPEN is ignored.

 33 FILE NOT OPEN: OPEN OUTPUT EXECUTED IN DEFAULT

The report file was not in "open" mode for an operation other than OPEN, the

file was opened as for OUTPUT.

 34 REPORT NOT INITIATED: INITIATED BY DEFAULT

The report was not in an "initiated" state when a GENERATE was executed. The

file handler performs the INITIATE action by default. However, not all the

actions, such as the clearing of total fields, will have been performed and the

results are therefore unreliable.

 35 CHARACTERS IN PAGE BUFFER OVERWRITTEN BY DIFFERENT CHARACTERS

 BEFORE OUTPUT

Two different entries placed different non-space characters in the same

position in the Page Buffer. The second entry will overwrite the first. (Space

characters do not rub out a previous character. Identical characters are

allowed to coincide without provoking this message.)

 36 COLUMN SET > LINE LIMIT: CHANGED TO 1

A SET COLUMN statement has set the margin beyond the LINE LIMIT.

 37 COLUMN SET NEGATIVE OR ZERO: CHANGED TO 1

A SET COLUMN statement has attempted to set the value of the margin to less

than 1. The SET is ignored.

 COBOL Report Writer Precompiler Installation and Operation for z/OS 72

 38 PAGE BUFFER WIDTH EXCEEDED DUE TO SET COLUMN OR TOO MANY STYLES

The left-hand margin (resulting from a possible SET COLUMN) and the size of

the data line taken together exceed LINE LIMIT. The line is truncated at the

limit.

 39 LINE SIZE EXCEEDS LIMIT: TRUNCATED

The width of the line data, without taking account of any margin, exceeds the

LINE LIMIT. Either the byte count of the data line or the LINE LIMIT held in the

report control area has been corrupted.

 40 DATA LENGTH OVERRIDE EXCEEDS LINE SIZE: IGNORED

The value stored in the field L-RCA-LINE-SIZE (the line size override) is greater

than the size of the data line itself. This indicates either a corruption to the

report control area or a fault in the setting of the line size and may be the

result of incompatibilities between the precompiler and the run time software.

 41 LINE LIMIT TOO LARGE: CHANGED TO MAXIMUM (m)

The LINE LIMIT should not exceed the absolute upper limit of 256.

 44 INTERNAL FILE HANDLER ERROR

The file is being OPENed other than OUTPUT or EXTEND. Some file handlers may

give this a special interpretation. Others will issue this message and assume

OUTPUT.

 49 INTERNAL FILE HANDLER ERROR

The file handler has detected an improbable line advance, indicating

corruption of LINE-COUNTER (L-RCA-LINE-CNTR). The file handler does a "PLUS

1" advance.

 50 DUPLICATED NUMBER > m

The integer of the DUPLICATED clause exceeds the maximum permitted (m).

This messages indicates a corruption, since the maximum is an arbitrary high

value.

 55 ATTEMPT TO SET LINE OUT OF RANGE OR BEFORE POSITION ALREADY WRITTEN

Either: a SET LINE clause has either set the LINE-COUNTER to a value outside the

range 1 to PAGE LIMIT. Or it has set it to a position above a line that has

already been written in RELEASE mode; the program should generate the

upper lines with the page SET to HOLD.

 56 REPORT'S MAXIMUM LINE BYTE WIDTH IS TOO HIGH

 57 REPORT'S MAXIMUM PAGE SIZE IS TOO HIGH

These messages are displayed by the PAGE BUFFER handler if the byte length

of a print line, or the number of lines per page, respectively, exceeds the

dimensions of its own internal storage table. These are set to generous limits as

supplied (see the source of CXRPBF01). To change these limits, re-compile the

PAGE BUFFER handler(s) changing the limit both in the OCCURS and clause

and in the location used in the test, and inform your supplier, so that the limits

can be increased in any future release.

 Appendix H – Invocation by LINK/ATTACH 73

 58 LINE-COUNTER < 1 OR > PAGE LIMIT

A check on the feasibility of the value of LINE-COUNTER has failed. The line will

appear in an unscheduled position on the page.

 61 REPORT ALREADY INITIATED: INITIATE IGNORED

An INITIATE was executed when the report was already "initiated".

 63 INTERNAL FILE HANDLER ERROR (not COBOL)

The DDname for the main report file is not declared. The OPEN cannot take

place.

 64 INTERNAL FILE HANDLER ERROR (not COBOL)

For a multiple file (DUPLICATED clause), a series of DDnames are required of the

form dddddd01 to ddddddnn where dddddd is the root name and nn is the

maximum number given in the DUPLICATED phrase. One of these DDnames

had not been declared.

 67 NO FREE PAGE BUFFER AVAILABLE

Too many files are open simultaneously and requiring a PAGE BUFFER routine.

These are called CXRPBFnn (nn = 01,02,...) and are allocated in sequence.

New PAGE BUFFER routines may be generated by "cloning" and re-compiling

module CXRPBF01, changing its last two digits to new successive values.

 69 NO PAGE BUFFER FOR LINE IN 'HOLD' STATUS

The report is in HOLD status but no PAGE BUFFER has been allocated to it. This

would indicate another serious error condition earlier than this point.

 81 REPORT NOT INITIATED ON TERMINATE

A TERMINATE was executed when the report was not in "INITIATEd" state. The

statement is ignored.

 91 NOT ALL REPORTS FOR FILE WERE TERMINATED ON CLOSE

An attempt is being made to close a file for which one or more associated

reports are still in an "initiated" state. The CLOSE is actioned but an error will

occur if any of those reports is subsequently TERMINATEd.

 92 FILE ALREADY CLOSED

A CLOSE has been actioned when the file was not in the "OPENed" state. The

CLOSE is ignored. In addition to the above, individual file handlers may display

values and messages of their own, in particular:

CRFHmode ERROR: LINE TOO LONG - TRUNCATED

which indicates a corruption to the print line's two-byte header.

Report Writer FUNCTION Errors

These errors are issued by the run time component of a FUNCTION. They

always begin with:

function-routine-name: ERROR

followed by the text of the message:

 COBOL Report Writer Precompiler Installation and Operation for z/OS 74

REPORT FIELD OF WRONG LENGTH: n

means that the size of the report field is outside the permitted limits, such as

when a printed DATE has less than six characters.

GIVEN DATE HAS INCORRECT PACKED FORMAT

means that the date parameter to the function, which should have the

COMP-3 format YYDDDs, is not in this packed form.

STYLE Errors

These are issued by the STYLE handler CXRSTYLE. They all indicate errors in the

implementation of the STYLE clause at run time. They always begin with:

CXRSTYLE:ERROR n

followed by the text, depending on the value of n:

 1 ONLY UNDERLINE AND HIGHLIGHT POSSIBLE ON IMPACT PRINTER

A STYLE other than UNDERLINE and HIGHLIGHT has been defined but the TYPE

of printer is not an IBM 3800 Laser Printer or compatible. Only these two STYLEs

can be implemented on an "impact" printer.

 2 STYLES NESTED OTHER THAN WHEN JUST ONE IS UNDERLINE

Nesting of STYLEs, though syntactically permitted, can only work on a

mainframe printer when UNDERLINE is nested with just one of the others

(HIGHLIGHT, ALT-FONT, GRAPHIC).

 3 UNNECESSARY CALL TO STYLE ROUTINE

This warning message is issued when a print line passed to the STYLE handler is

found not to contain any STYLE escape sequences at all.

 4 UNRECOGNIZED STYLE

One of the STYLEs in the print line is not one of NORMAL, UNDERLINE,

HIGHLIGHT, ALT-FONT, or GRAPHIC and so cannot be processed.

 5 INCOMPLETE STYLE SEQUENCE

The input record was exhausted before the end of the escape sequence.

 6 MATCHING END-STYLE NOT FOUND

Every escape sequence that begins a STYLE must pair with an escape

sequence to end it. When the file was closed, at least one of the former was

still unpaired.

 7 END-STYLE FOUND WITHOUT PREVIOUS START-STYLE

An ending escape sequence was encountered without having first had the

starting sequence.

Other Run Time Errors

Several other messages can be issued by run time routines. These normally

signal only very rare conditions caused by corruption of the program. The

message always begins with the name of the routine and can therefore be

found and understood in the source of the routine in question.

 Appendix H – Invocation by LINK/ATTACH 75

Appendix H

Invocation by LINK or ATTACH Macro

Both the compiler and the stand-alone precompiler may be invoked from another

program via a LINK or ATTACH macro. They follow the established convention that a

second parameter to the program may be supplied, containing a list of alternative

DDnames. The sequence of 8-byte entries in the DDnames list is given below. This is the

same as the list specified for the IBM COBOL compiler, but with the addition of the

precompiler's new DDnames (SYSINS, SYSUT11, and SYSLIST).

DDname position name for which substituted

 1 SYSLIN

 2 SYSINS

 3 not applicable

 4 SYSLIB

 5 SYSIN

 6 SYSPRINT

 7 SYSPUNCH

 8-11 SYSUT1-4

 12 SYSTERM

 13-15 SYSUT5-7

 16 SYSADATA

 17 SYSJAVA

 18 reserved

 19 SYSMDECK

 20 DBRMLIB

 21 SYSOPTF

 22-29 SYSUT8-15

 30-35 reserved

 36 SYSLIST

 Index 77

Index

Click on Page Numbers

A

abbreviated keywords 27

ADV option 28, 35

ALPHABET clause, effect on CONTROLS 61

ALT-FONT printer STYLE 65

ANS-68 features, summary 3

ANS-74 extensions 3

ANS-85

 contained programs 12, 24

 extensions: REPLACE 11

 features affecting Report Writer 6

ANS-85 extensions 3

APARS - see amendments

APOST option 28, 35

Assembler routines 24

 list 56

B

BASIS statement 8, 10

batched programs 12

BOLDFACE – see HIGHLIGHT

C

CBL/PROCESS statement 10

CHAN file handler - use 63

channels - see CHAN file handler

clauses that need run time routines 59

CMPR2 option 6, 25, 28

COBOL routines, use 60

COBPACK, use by precompiler 23

comment lines 11

compilation of run time library 44

COMPILE option 38

compiler-directing statements 9

 **CONTROL RW 7, 9, 18, 36

 *CBL/*CONTROL 9

 BASIS 10

 CBL/PROCESS 10

 COPY 10

 EJECT 10

 ENTER 10

 EXEC...END-EXEC 10

 list of statements 9

 REPLACE 11

 SERVICE LABEL 11

 SKIP1,2,3 10

 TITLE 11

 USE 11

conditional precompilation

contained programs - see nested programs

CONTROLS – implementation 61

controls, format of 37

controls, size of – see CTRLEN

COPY books 8

COPY option 11, 28

COPY statement 10, 12

COPY, use with RTNEST option 24

CRFHPRNT file handler 59

CTRLEN option 29, 37, 61

customization

 general 9

 for z/OS 41

 of options 27

 preparation for 26

 reasons for 26

D

data set requirements 23

 PHSLIBA/Q 48

 SYSCHANS 63

 SYSIN 23

 SYSINS 23

 SYSLIB 24, 48

 SYSLIST 17, 24, 48

 SYSOUT 69

 SYSPRINT 17, 23

 SYSTERM 48

 SYSUT11 8, 24, 47

DB2, combined with Report Writer 10

DBCS option 30

DDnames, substituting 75

debug 19, 33

debug lines (D in column 7) 12

default options 26

DYNAM option 25, 38, 49

dynamic calls 25

E

EJECT statement 10

END PROGRAM header 12

END-EXEC statement 10

ENTER statement 10

errors (in source) – see messages

 COBOL Report Writer Precompiler Installation and Operation for z/OS 78

EXEC … END-EXEC statement 10

EXIT, compiler option 5, 30

 see also INEXIT(RW), PRTEXIT(RW)

EXIT, precompiler option 31

F

FD clause 19

features of Report Writer 3

file handlers

 (see Programmer’s Manual)

 sample 44

 general 18, 19, 24, 25, 32, 49, 59

 list of supplied 56

 messages 71

FIPS flagging 8, 32

FLAG option , 31

FLAGSTD option 8, 32

FMODE option 32, 59

FUNCTION routines, development 49

FUNCTION routines, list 55

G

GLOBAL files and reports 3

GLOBAL reports 56

GRAPHIC printer STYLE 65

H

hardware requirements 23

HIGHLIGHT effect, via STYLE 19, 65

I

IBM extensions 32

IBM COBOL, migration to 6

identification columns 12

imbedded – see embedded

independent report file handlers 44

INEXIT(RW) 5, 12, 26, 30, 47

input source, elements of 9

installation for z/OS 39

installation verification – see IVP

intermediate code production 6

intermediate source 12

INX - see INEXIT

IVP 44

J

JCL

 to compile run time routines 44

 to customize precompiler 41

 to do stand-alone precompilation 48

LANGLVL option 10

LANGUAGE option 32

laser printer 65

LGSEQ option 19, 33

LIBEXIT option 5, 17

libraries, list of routines 53

LINE LIMIT clause 35

LINE-COUNTER 18

LINECOUNT option 27, 33

link editing programs 25, 49

LIST option 18

listings, of source program 17

M

MAP option 17

memory requirements 23

memory, use of 8

messages, compiler-generated 33

messages, from precompiler 6, 8

messages, run time 69

MGENER option 17, 33

migration to VS COBOL II 6

MIXRES 26

MODE clause - see file handlers

MONIT option 34

N

nested programs 12, 24, 35

non-Report Writer sources 7

NORTNEST,NORW etc. options - see under

positive form RTNEST,RW etc.

NUMBER option, restrictions 11, 38

O

objectives 3

obsolete features 32

OFFSET option 17

options 9

 ADV 28, 35

 APOST 28, 35

 at customization time 27

 CMPR2 6, 25, 28

 COMPILE 38

 CONDC 29

 COPY 11, 28

 CTRLEN 29, 37, 61

 Index 79

 DBCS 30

 DYNAM 25, 38, 49

 EXIT 5, 30, 31

 FLAG 31

 FLAGSTD 8, 32

 FMODE 32, 59

 how they control precompilation 26

 how to code 27

 LANGLVL 10

 LANGUAGE 32

 LGSEQ 19, 33

 LIBEXIT 5, 17

 LINECOUNT 27, 33

 LIST 18

 list of 28

 MAP 17

 MGENER 17, 33

 MONIT 34

 NUMBER 11, 38

 OFFSET 17

 OPTFILE 34

 OSVS 34

 PPSNS 35

 precompiler-specific 26

 PRTEXIT 5, 8, 17, 18, 30

 QUOTE 35

 RENT 25

 RESIDENT 23, 25, 25

 RTNEST 18, 24, 35, 44, 48, 49

 RW 36

 SEQUENCE 36

 shared 27

 SIZE 23

 SOURCE 36

 SPACE 37

 TERM 18, 37

 TEST 19

 VBREF 17

 WORD 38

 XCAL 24, 29, 37, 53, 59, 60, 61

 XREF 17

options, listings 17

z/OS

 installing precompiler 39

 using precompiler 45

OS/VS COBOL, migration from 6

OS/VS COBOL, variants 34

OSVS option 34

output, from programs 19

P

Page Buffer handler 25

PAGE HEADING and FOOTING 35

PAGE-COUNTER 18

PARM in JCL 27

PARM string, with INEXIT(RW) 47

phases, list 53

PHSLIBQ/A data set 48

planning for installation 21

PPSNS option 35

precompiler

 benefits 6

 notes on operation 7

 overview 7

 purpose 5

 use under z/OS 45

 options 26

 list of phases 53

printing

 basic 19

 special 19

PRNT file handler 56, 65

PROCESS statement - see CBL

product tape – see tape

programs, list 53

PRTEXIT option 5, 18, 30, 31

PRTEXIT(RW) 12, 17, 30, 47

PRTEXIT, purpose 8

PRTX - see PRTEXIT

Q

QUOTE option 35

R

record length: forcing a value 35

RENT option 25

REPLACE statement 8, 11, 12

REPLACING option of COPY 10

Report Writer

 summary of features 3

 user-developed routines 49

reserved words 67

RESIDENT option 23, 25, 25

return codes 18

RTNEST option 18, 24, 35, 44, 48, 49

run time library

 general description 9

 list of routines 53

 COBOL Report Writer Precompiler Installation and Operation for z/OS 80

run time

 library, generation 44

 messages 69

 requirements 24

 routines, in source form 35

 routines, how incorporated 24

 routines, when-required list 59

RW option 36

RW operand of **CONTROL 7, 9, 35

S

sequence numbers 11, 33

SEQUENCE option 36

SERVICE LABEL statement 11

severity levels, of messages 18

severity of messages 32

shared options 27

size - see memory

SIZE option 23

size requirements 23

SKIP1/2/3 statements 10

software requirements 23

sources (of run time library) 44

SOURCE option 36

SOURCE SUM correlation 34

SPACE option 37

SPC extensions 32

SPCHOPTS phase, generation 26

special effects 19

stand-alone precompiler 48

stand-alone precompiler, use of 6

STEPLIB to precompile 47

STYLE clause 19

STYLE handler 25

STYLEs, list 65

summary and statistics listing 18

SUPPRESS option of COPY 24

SYSCHANS data set 63

SYSIN data set 23

SYSINS data set 23

SYSLIB data set 24, 48

SYSLIST data set 17, 24

SYSLIST listing 48

SYSOPTF data set 34

SYSOUT, use at run time 69

SYSPRINT data set 17, 23

SYSTERM data set 48

SYSUT11 work space 8, 24, 47

T

Table Reference Characters 65

TERM option 18, 37

TEST option 19

TITLE statement 11

TRC - see Table Reference Character

U

UNDERLINE effect, via STYLE 19

UNDERLINE printer STYLE 65

USE statements 11

user-written extensions 49

user-written routines 24

V

VBREF option 17

verification of installation - see IVP

virtual memory, use of 23

W

warning messages 6

wild cards in COPY 10

WITH DEBUGGING MODE statement 12

WORD option 38

work space – see SYSUT11 data set

X

XCAL option 24, 29, 37, 53, 59, 60, 61

XREF option 17

Z

ZAPS - see amendments

etc

3800 model printer 65

**CONTROL statement 7

*CBL & *CONTROL statements 9

*CONTROL statement 7

>>IF … END-IF directive 14

>>EVALUATE … END-EVALUATE 14

